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Abstract

We study the solutions joining two fixed points of a time-independent dynamical system on a
Riemannian manifoldM, g) from an enumerative point of view. We prove a finiteness result for so-
lutions joining two pointy, ¢ € M that are non-conjugate in a suitable sense, under the assumption
that(M, g) admits a non-trivial convex function. We discuss in some detail the notion of conjugacy
induced by a general dynamical system on a Riemannian manifold. Using techniques of infinite
dimensional Morse theory on Hilbert manifolds we also prove that, under generic circumstances,
the number of solutions joining two fixed points is odd. We present some examples where our theory
applies.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given a second order differential equatioh = £(y', y, 1) in the Euclidean plan&?2,
several authors have studied the problem of determining the number of its solutions con-
necting two given pointé&yg, yo) and(z1, y1) in the plane. This is the simplest and the oldest
boundary value problem; accordingly, there is a vast literature in the context of pure and
applied mathematics, as well as other sciences.
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A first natural question to ask is under which conditions there are only a finite number of
solutions joining two fixed points. For instance, when the right-hand side of the equation is
analytic, then the number of solutions of the boundary value problem are zeros of a suitable
analytic function, hence they are a finite number if one has a priory bounds on the solutions
of the probleni2].

More generally, if one fixes the initial poiritg, yo), then it is interesting to study how
the number of solutions varies when the final endpdinty;) varies in the plane, and
what kind of decomposition of the plarig? = Urgoi is obtained, where; is de-
fined as the set of those points, y1) for which there are exactly solutions of the
problem.

This decomposition, calletbcal decompositiorfor alsos-decompositiorjsby some
authorg20] was introduced ifil 8] and developed by several other authors [$4€20]and
the references therein). The deepest result proven concerning focal decomp¢2@jons
is that, under suitable technical assumptions, eadh the union of strata of an analytic
Whitney stratification, and that; has empty interior when is even. Many techniques
involved do notgeneralize to the case of higher dimensional systems of differential equations
(see for instancf20, Section 8], and there is not much literature on the topic concerning
higher dimensional systems.

Another direction of investigation consists in studying similar boundary value problems
in curved spaces; it is absolutely evident that both the topology and the metric (i.e., the
curvature) of the configuration space has a deep influence on the number of solutions of
a two-point boundary value problem. In this paper we study the solutions of autonomous
dynamical system on a Riemannian manifold of the fofidr)x = —V V(x); interpreting
M as the configuration space of a mechanical system, then these solutions represent the
trajectories of masses under the influence of a conservative force with poteWitisVe fix
an initial valuep = x(0) in M, a positive value of the time paramef@rand we look at the
decomposition oM into the sets;,i =0, ..., +00, whereo; consists of all points oM/
that can be reached after a tifidoy exactlyi distinct trajectories of the dynamical system
starting at the instant= 0 in p.

Ouir first aim is to establish sufficient conditions @¥, g) andV to guarantee that.,
has null measure i, i.e., that for almost all choice @f, the number of trajectories of the
dynamical system that start atand terminate aj after a fixed time is finite.

In the case of non-flat metrics, the problem is interesting also in the cas¥ tka0,

i.e., when the dynamical system reduces to the geodesic equaiidh i). For instance,
finiteness results for Riemannian geodesics between two fixed points give analogous re-
sults for lightlike geodesics between a point and an observer of a (conformally) stationary
Lorentzian manifold. This kind of results can be applied in Astrophyditsl2]to obtain
information on the so-callegravitational lensing effedn General Relativity, which pro-

duces the phenomenon that an astronomer observes multiple images of the same light (or
radio) sourcg22].

Our main finiteness result§Séction 3 use an assumption that can be considered both
topological and metrical oM, g), namely, we prove that ifM, g) admits a non-trivial
proper convex function which is non-increasing on the flow lines of the gradiénttbien
the number of trajectories: [0, T] — M of the dynamical system joining two pointsaand
q is finite for almost all pairg andq. Moreover, we prove that under suitable boundedness
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on the growth of the potentidl at infinity, such number is generically odd, i.e., the sets
defined above have null measure foria# 1, ..., +o0.

In order to clarify the result, it may be helpful to discuss a simple but instructive ex-
ample that was our initial motivation for the convexity assumption. Let us look at the
caseV = 0 and the corresponding dynamical systems, whose solutions are geodesics in
(M, g). Probably the first finiteness result for this situation is the well known theorem of
Hadamard, that states thatiif is simply connected,M, g) is complete and it has negative
sectional curvature everywhere, then between any two points there existgiageodesic.

In this situation, for each point € M, the mapF(x) = dist(p, x) is strictly convexon
M,ie,Foy : R — Ris strictly convex for all non-constant geodesic R — M.

On the other hand (strictly), convex functions exist on a larger class of (non-compact)
Riemannian manifolds (se&ppendix A), and it is possible to prove that, in manifolds
that admit strictly convex proper functions there are only a finite number of geodesics be-
tween two non-conjugate poinf$l1]. In this paper we exploit the methods [dfL,12] to

treat the case of general conservative dynamical systems; the main idea is that solutions
of a general conservative dynamical system remaining inside a compact subset and with
diverging energytendto geodesics in a suitable sense (keenma 3.1and the proof of
Proposition 3.2 i.e., the gravitational forces have a neglectible effect on masses with very
large kinetic energy, whose trajectories tend tstbaightas the kinetic energy goes to infin-

ity. In this situation, in order to obtain finiteness results one can apply the standard convexity
techniques.

Observe that the existence of convex functions depend crucially on the metric (that defines
the geodesics), but also on the topologyfit is well known that compact manifolds do
not admit non-constant convex functions, and that a manifold that admits a strictly convex
function with a minimum pointis diffeomorphic ®&". A short survey of the basic properties,
examples and constructions with convex functions in Riemannian manifolds is presented
in Appendix A

It turns out that, as in the geodesic case, the points thatarigaterelatively to a
dynamical system play a crucial role in the theory. Roughly speaking, two poardg on
M are conjugate relatively to a dynamical system (3egnition 2.J) if there exist a homo-
topy {x;}se]—e,¢ Of SOlUtions of the dynamical system satisfying the boundary conditions
x5(0) = pandx,(T) = ¢, up to infinitesimal of order greater than one. However, it must be
noted that, unlike the case of geodesics, the set of solutions of a general dynamical system
is not invariant by arbitrary affine reparameterizations, so that the notions of conjugacy,
Jacobi fields(Definition 2.2 and of exponential mag{see the proof oProposition 2.5
relative to a dynamical system require special attention. A detailed presentation of the main
properties of conjugate points relative to a dynamical system is givBedtion 2among
other things, we prove that the set of points that are conjugate to a given one has null measure
(Proposition 2.5

The finiteness problem for solutions of the dynamical system satisfying the two-point
boundary condition is studied iBection 3 we first give alocal finiteness result
(Proposition 3.2 and then, using further assumptions on the convex function, we prove
the global finiteness result for solutions joining two non-conjugate poifsoposition
3.4). As a matter of fact, passing from the local to the global result is possible for those
dynamical system having the properties that all their solutions with endpoints inside a
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compact set do not leave a possibly larger compact subset &uch differential equa-
tions are defined to beegular in some references (see for instarj26]); observe that
the regularity plays a crucial role also in many results[2d]. In this language, the
existence of a strictly convex function aif that is non-increasing on the flow lines
of VV is a sufficient condition that guarantees the regularity of the dynamical system.
Other regularity criteria, as well as examples where our theory applies are discussed in
Section 4

Finally, in Section 5we apply techniques of Critical Point Theory, more precisely the
Morse theoryand theljusternik—Schnirelman thegryo study theparity of the number
of solutions between two non-conjugate poirfesgposition 5.}, and to show that i
is not contractible then the number of solutions between any two points is never finite
(Proposition 5.2 These theories require some technical assumptions on the variational
setup; for this reason we assume a suitable control on the growth of the potérttal
infinity.

2. Dynamical systems on Riemannian manifolds: conjugate points and focal
decomposition

In this section we introduce and discuss briefly the main notions about conservative
dynamical systems whose configuration space is a Riemannian manifold. Some of the results
presented here are not new, but they are nevertheless stated and proved in our context for
the reader’s convenience.

Let (M, g) be am-dimensional Riemannian manifold; we will denote¥yhe covariant
derivative of the Levi—-Civita connection gfand byR the curvature tensor &f, chosen
with the following sign convention:

R(X,Y) =VxVy — VyVx — Vix 1]

For a vector fieldv along a curver in M, we will use both notations’ and (D/df)v to
denote the covariant derivative o&longx; the latter symbol being used almost exclusively
to denote the covariant derivativ®/dr)x of the tangent fieldc. The symbol| - || will
denote thenorm of tangent vectors t@d/ induced byg. For the basics of the geometry of
Riemannian manifolds we refer to the textbdék

Given a sufficiently regular map : M — R, let us denote by f and Hesy’, respec-
tively the gradient and the Hessian ifRecall thatV f is the vector field in/ defined by
the relationg(V f(p), -) = df(p), and that Hesg is the (2, 0)-tensor field whose value at
the pointp € M is a symmetric bilinear form o, M defined by

Hess, f(v, w) = g(V,V f(p), w), v, w e T,M.

Using the metrig, we will also think of the Hessian agasymmetric linear endomorphism
Hess, f : T,M — T,M defined by

g(Hess, f(v), w) = Hess, f(v, w), Yv,we T,M.
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2.1. Conservative dynamical systems on M

LetV : M — R be a map of clas6? and consider the following differential equation
for curves inM:

gx = —VV(x). (2.1)

In this section we will discuss the notion of conjugate points along a soluti¢ bf this

notion generalizes the classical notion of conjugate points along a geodesic in Riemannian
or semi-Riemannian geometry. We will referiqg. (2.1)as adynamical systeran M with
potential—V.

Since(2.1) is autonomous, then the set of its solutions is invariant by time-translation
and by time-reversing reparameterizations. Note however that, uniedecally constant,
the set of solutions af2.1)is notinvariant by arbitrary affine reparameterizations.

For this reason, in our setup we will choose an interval of the fornT]@&s the basic
domain of our curves, and, unlike the case of conjugate points in semi-Riemannian geometry,
the notion of conjugate points induced (&.1) will be dependent on the choice of such
interval.

An immediate computation shows that the solution$2o1) satisfy the following con-
servation law:

1g(k, %) + V(x) = E, (constant. (2.2)
It is well known that the solutions P.1)that satisfy the boundary conditions:
x(0) =p, x(T)=q, (2.3)
with p, g € M are precisely the stationary points of the Lagrangian action functional:
Tr1
Lr(x) = / [ég()'c, x) — V(x)} dr, (2.4)
0

defined in the smooth Hilbert manifol@, ,([0, T], M) of all curvesx : [0,T] — M

of classH' in M such thatx(0) = p andx(T) = ¢. Since(M, g) is complete, then
also$2, ,([0, T], M) is a complete Hilbert manifold. The functiondl is of classC? on
£22,4(0, T], M). Given a critical pointx € 2, ,([0, T], M) of L7, the second variation
d’L7(x) of L7 atx is easily computed to be the following bounded symmetric bilinear
form:

T
dZET(x)(v, w) = I(v, w) = / [V, w') + g(R(x, v) X, w) — Hess V(v, w)] dt,
0

(2.5)

defined in the Hilbert spacg £2,, ,([0, T], M), which consists of alH vector fields along
x vanishing at 0 and &f.

Our main goal is to study the number of solutions(®f1) that satisfy the boundary
conditions(2.3); foralli =0, 1, ..., +o00, we set:

o; = {q € M : there exist preciselysolutions of(2.1) and(2.3)}. (2.6)

Obviously, thes;'s, i =0, ..., 400 are pairwise disjoint and they form a partition &f.
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2.2. Conjugate points defined (8.1)

Recall that a critical point for the action functionalr in £2,, ,([0, T], M) is said to
be non-degeneraté the second variation 47 (x) is a strongly non-degenerate bilinear
formon7,22, ,([0, T], M), i.e., when the self-adjoint operator @ps2,, ,([0, T], M) that
represents &y (x) is an isomorphism. The critical pointis said to bedegeneratéf it is
not non-degenerate.

Definition 2.1. A pointg € M is said to beconjugate to p o0, 7] relatively to(2.1) if
there exists a degenerate critical poirdf L7 in £2,, ,([0, T], M).

By the time-orientation invariance, the notion of conjugacy Qs clearly symmetric
in p andg, so that, whelg is conjugate tg on [0, 7] relatively to(2.1), we will say thatp
andg are conjugate points.

The notion of conjugacy can be given in terms of solutions of the linearizati¢. bf
is as follows.

Definition 2.2. A V-Jacobi fieldalong the solution is a vector field/ alongx that satisfies
the linearization obquation (2.1)which is easily computed as:

J" — R(x, J)i + Hess V(J) = 0. (2.7)

Thus, by definition,V-Jacobi fields along a solutian are variational vector fields that
correspond to variations afby solutionsx; : [0, T] — M of (2.1), here, byariationsof

x by solutions of(2.1) we mean a family — x; of solutions of(2.1) such thatvp = x and
such thats — x,(0) is of classC?. This statement is made more precise in the following
lemma.

Lemma2.3. AC?vectorfield J along a solution: [0, 7] — M of (2.1)is a V-Jacobi field
iff there exists a variatiorix}se)—¢, o[ Of X by solutions of2.1)in [0, T] with variational
vector field Ji.e. (d/ds)x,(f)|s=0 = J(¢) for all ¢ € [0, T].

Proof. Clearly, variational vector fields corresponding to variations by solutionsatfisfy
the linearizedequation (2.7)Conversely, assume thétsatisfieq2.7), lete > 0 be small
enough, ley ;] —¢, e[— M be a smooth curve satisfying0) = x(0) andy(0) = J(0) and
let W ] —¢, e[ TMbe a smooth vector field alongsuch that¥(0) = x(0) and such that
W’(0) = J'(0). For each, letr — x,(r) denote the maximal solution (%.1)in M satisfying
x;(0) = p(s) and (d/dt)xs|,—0 = W(s). Clearly,xo = x on [0, T], and by continuity, for
¢ > 0 small enoughy; is defined on [0T]. Let J denote theV-Jacobi variational field
alongx corresponding tdx,}; one has/(0) = y(0) = J(0) andJ'(0) = W'(0) = J'(0),
so that/ = J and we are done. O

By an easy boot-strap argument and integration by pa& ) one proves the following
lemma.
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Lemma24. Letx € 2, ,([0, T], M) be a critical point ofL7. Then a vector field/
T,82,,4([0, T], M) is a V-Jacobi field along x if and only if J is in the kernel Kgrof I,
i.e,ifand onlyI(J, w) = Ofor all w € T, £2, ([0, T], M).

We are now ready to prove the relation between conjugate point¥ alatobi fields.

Proposition 2.5. A pointg € M is conjugate to p ofi0, 7] relatively to(2.1) if and only
if there exists a solution : [0, T] — M of (2.1) satisfying(2.3) and a non-zero V-Jacobi
field J along x such that(0) = J(T') = 0.

Proof. If there exists a non-zert-Jacobi fieldJ alongx with J(0) = J(T) = 0, then
J € T8, 4([0, T], M); moreover byLemma 2.4such Jacobi field would be a non-zero
elementin Ke¢l). This implies thak is a degenerate critical point6f- in £2,, ,([0, T], M),
and sop andg are conjugate.

On the other hand, assume theandg are conjugate on [@] relatively to(2.1); then,
by definition, there exists a degenerate critical peiot L7 in £2,, ,([0, T], M), i.e., a point
x for which the bilinear form¥ of (2.5)is not strongly non-degenerate. Now, we claim that
weak and strong non-degeneracy are equivalent for the bilinear(@5) i.e., that/ is
strongly non-degenerate if and only if Kéy = {0}. To see this, observe thhis represented
on the Hilbert spacé’ 2, ,([0, T], M) by a Fredholm operator of index zero. Namely,
the bilinear form(v, w) — fOT gV, w') dr is represented by a positive isomorphism of
T,82,,4([0, T1, M), which is a Fredholm operator of index 0. Moreover, the bilinear form

T
(v, w) > / [g(R(x, v)x, w) — HessV(v, w)] dt
0

is continuous in th&® topology, and by the compact inclusion@? in A it follows that
it is represented by a compact self-adjoint operato?g2,, ([0, T], M). Since compact
perturbations of Fredholm operators are still Fredholm operators with the same index, it
follows that! is represented by a Fredholm operator of index zero.

So, 1 is strongly non-degenerate if and only if Kér = {0}, and the conclusion follows
easily fromLemma 2.4 O

We have now our setup ready to prove the genericity of the non-conjugacy condition. The
technique is analogue to the case of conjugacy by geodesics in Riemannian manifolds: the
conjugate points are characterizeccatical valuesof a differentiable map (the analogue
of the Riemannian exponential map) and the conclusion is obtained as an application of
Sard’s theorem.

Proposition 2.6. Let p € M be fixed. The set of poingse M that are conjugate to p on
[0, T relatively to(2.1) has null measure in M

Proof. For p € M, we introduce aC?! mapF, : A C T,M — M defined on an open
neighborhood of 0 i, M by setting

Fp) =x(T),
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wherex : [0, T] — M is the unique solution of2.1) with x(0) = p andx(0) = v.
The differentiability of 7, is standard: as in the case of the exponential map in Rieman-
nian geometryF, is obtained from the flow of some? vector field inTM, which is of
classC?l.

The vectow € Aisacritical pointforF,, i.e., the differential d7), : T,M — Tr, M
is not surjective, ifix(T) = F,(v) is conjugate tg alongx. Namely, usind.emma 2.3t
is easily computed:

d(fp)v(w) = J(T),

where J is the uniqueV-Jacobi field alonge such that/(0) = 0 andJ'(0) = w. Thus,
d(F)» is not surjective iff Ketd(F,),) # {0}, and byProposition 2.5his is equivalent to
Fp(v) being conjugate te.

So, the pointg that are conjugate tp are the critical values af),, and the conclusion
follows from Sard’s theorem. O

2.3. Conjugate points along a solution(@.1)

We fix a solutionx : [0, T] — M of (2.1) and we introduce the notion of a conjugate
point (or better, of conjugate instant) alongs as follows.

Definition 2.7. Letx : [0, T] — M be a solution 0of2.1). An instantsg €]0, T] in M
is said to beconjugatealong x if there exists a non-zer&-Jacobi fieldJ alongx with
J(0) = J(to) = 0. Themultiplicity mul(rg) of the conjugate instang is defined to be the
dimension of the space df-Jacobi fields along such thatV(0) = V(¢g) = O; clearly,
mul(rg) < n.

By Proposition 2.5an instantg €]0, 7] is conjugate along if and only if the pointx(zg)
is conjugate ta:(0) on [0, 7o] relatively to(2.1), beingx|po, 1, the corresponding degenerate
critical point of £, in §2,(0), () ([0, 0], M).

Given a solutiorx : [0, T] — M of (2.1), we will denote byJ, thern-dimensional vector
space of allv-Jacobi fields/ alongx satisfyingJ(0) = 0. For allzg €]0, 77, let

10 - JIx = Tra) M, (2.8)

denote the evaluation map +— J(rg); observe that the fact thag is a conjugate in-
stant alongx if and only if ¢,, is not an isomorphism. Moreover, ip is a conjugate
instant alongx, then its multiplicity equals the codimension of the image(dr)
in Ty M.

The following result is totally analogous to the case of Jacobi fields along a semi-
Riemannian geodesic.

Lemma 2.8. If J1, J> are V-Jacobi fields along x then the quantigyJ;, J2) — g(J1, J5)
is constant. In particularif J1, J2 € J,, theng(J3, J2) — g(J1, J5) = 0.
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Proof. Using (2.7) and the symmetry of the curvature tensor and of the Hessian operator
one computes immediately:
d /
E(g(Jl’ J2) — g(J1, J3))
= g(R(x, J2)x, J1)) — HessV(J1, J2) — g(R(x, J1)x, J2)) + HessV(J2, J1) = 0.
O
Using the conservation law dfemma 2.8satisfied by thé/-Jacobi fields it is possible to

adapt the classical proof of discreteness of the set of conjugate points along a Riemannian
geodesic to prove the following proposition.

Proposition 2.9. Letx : [0, T] — M be a solution of2.1);, then the set of conjugate
instants along x is finite

Proof. Let 7o €]0, T] be a conjugate instant along to prove the proposition we will
show that there are no other conjugate instants in a neighborhogd T this aim, set

k = mul(zp) and choosds, ..., J, a basis of the spadk.
Clearly, the vectordy1(to), . . ., Ju (o) form a basis of Inip,,); moreover, their deriva-
tives J; (o), . . ., J;.(to) form a basis for the orthogonal I(mto)L. To see this, observe that

thesek vectors inT, M are linearly independent, because the vectdy&o), J; (o)),
i=1,...,kare linearly independent antl(rg) = O fori = 1, ..., k. To prove the claim
now simply observe that, dyemma 2.8 J; (10), . . ., J; (fo) do indeed belong to the orthog-
onal space Irp,,)*, because:

g(Ji(10), J(t0)) = g(Ji (to), Jj(t0)) + g(Ji(to), J'(t0))
=¢g(J;(0), J;(0)) + g(J;(0), J}(O)) =0,

foralli=1,....,kandallj = k+1,...,n. SinceTy;nyM = Im(¢y) & |m(¢,0)l, we
conclude that the family

is a basis off(;p) M.
We now define a family{J;}"_, of C? vector fields along by settingJ; = J; for
i=k+1,...,nand
- Jl—(t) fort # 1o,
Jip=qy1t—-10 i=1,... .,k
J (o) ift=r,

An instantr # 19 in 0, T] is conjugate along: iff A(r) = detJy(r), ..., J,(1)) = O
because for £ g the vanishing of this determinant is equivalent to the vanishing of
det(J1(¢), ..., J.(1)) = 0. Now, since the/;(1p)’s are linearly independent, it is(tg) 0,
and by continuityz(7) # 0 in a neighborhood af. This concludes the proof. O
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The notion of conjugate instants along a solutior{il) is related to the Morse index
of the action functionalCr at the critical pointr. Recall that given a2 map F on a
differentiable manifoldX and a critical poink € X of F, then theMorse indexof F atx is
the index of the second variatioR B(x) on 7, X, which is the supremum of the dimensions
of the subspaces @f. X on which the symmetric bilinear form?d(x) is negative definite.
We state now an extension to a solution®f1) of the classical Morse Index Theorem for
geodesics joining two points on a Riemannian manifold.

Proposition 2.10. Letx : [0, T] — M be a solution 0f2.1) satisfying(2.3), i.e, x is a
critical point of the functionallr (2.4)in £2, ,([0, T], M). Then the Morse index dfr at
X is finitg and it is equal to the number of conjugate instants along]®i[ counted with
multiplicity.

The proof is quite similar to the proof of the Morse Index Theorem for Riemannian
geodesics (see for instanf& Theorem 2.4]or the bookq13,16])). An extension of the
index theorem has been recently obtaine¢Rit] in the case ohon-convexdamiltonian
systems.

3. Finiteness of the number of solutionsfor the two-point boundary value problem

In this section we will prove the finiteness of the number of solution@df) joining
two non-conjugate pointg andg in a Riemannian manifoldM, g) that admits non-trivial
convex functions.

We start with a technical lemma concerning tifeconvergence of sequences of curves
whose covariant acceleration goes to zero uniformly. The result is trivial when the metric
is flat, i.e., when the covariant acceleration coincides with the second derivative. For the
general case the argumentis more delicate, due to the fact that for the use of local coordinates
one first needs to prove the uniform convergence of the sequence.

Lemma 3.1. Let (M, g) be a complete Riemannian manifplét y, : [a,b] — M be a
sequence of2 maps such thaf, (a) converges tay in TM and such that|(D/df) v, ||
converges td uniformly in[a, b]. Then y, converges in th&? topology to the(affinely
parameterizeflgeodesic : [a, b)] — M with y'(g) = vo.

Proof. We will show first that||y, || is uniformly bounded ind, b]; to this aim, set:,, =
(D/dD) 3, ||, denote by, = g(3, y») and observe thas',| < 2u,+/8, < 2u,(8, + 1). It
follows from Gronwall’s inequality that:

8y < K™,

whereK = sup,[s,(a) + 2[: u, df] andk = 2sup,|lu,lleo. Hence, ||y, |l is uniformly
bounded; se€ = sup, ||y lco-

Lety: [a, b] — M be the geodesic with(a) = vp and letr > 0 be anormal radiusfor
all the points of the image of, i.e., the exponential map exp is a diffeomorphism on the
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ball of radius centered at the origin df,;) M for all € [a, b]. Chooses > O with Ce < r
and with|jvglle < .

We make the following claim: i, (zo) converges ta (zg) for somerg € [a, b], theny,
converges in th€? topology toy on the interval fy — &, to + €] N [a, b]. The proof of the
Lemma will follow immediately from the claim, sincg, (a) converges tag = y(a).

Let U be the geodesic ball centeredyéty) and of radiug; observe that/ is the domain
of a normal geodesic coordinate system. Sifes|s < r, it follows thaty|[;,—s. o+¢n[a.5]
has image irU; sinceCe < r andy, (o) tends toy(to), it follows thaty, |[:,—e, +en[a.5]
has image irU for all n sufficiently large. Set,, = (D/dr)y, and using local coordinates
in U, for n large enough we can write

Gf + DTG G = @),
iJ

WhereFi’f. denote the Christoffel symbols of the Levi—Civita connectiory @fi the local
chart. Sincez;, tends uniformly to 0 indy — &, to + €] N [a, b], v, (to) tends toy(zg) and
v (t0) tends toy(rg), standard results on the continuous dependence of the solution of an
initial value problem from the data allow to conclude thatends toy in the C2 topology
on the given interval. This proves the claim and concludes the proof. O

We can now prove that, ifM, g) admits a strictly convex function (s&efinition A.1),
then there are only a finite number of solutions(®fl) and (2.3)that remain inside a
compact subset o¥/.

In order to prove the result, we need to recall a few basic facts from Critical Point
Theory. We recall that, given@! functional f : X — R on a Hilbert manifold X, b), then
f satisfies théalais—Smale condition at levele R if every sequencéx) in X such that

k'Lmoof(Xk) =c, kimwh(vf(xk)’ V fxx)) =0, 3.1

has a subsequence converginirBy V f(x) we denote thgradientof f atx € X, which
is a bounded linear operator on the Hilbert spacE defined byh(V f(x), -) = df(x). A
sequencdxy) satisfying(3.1) is called aPalais—Smale sequender f in X at the level
c. If fis of classC?, then f is said to be aMorse functionif all its critical points are
non-degenerate. For instance, we have provétraposition 2.5hat the action functional
(2.4)is a Morse function o2, 4([0, T], M) provided thatp andq are not conjugate on
[0, T] relatively to(2.1).

Itis well known that, as in the case of smooth functions on a finite dimensional differen-
tiable manifold, if f is a Morse function on the Hilbert manifolcX, ) then each critical
point of f is isolated.

Proposition 3.2. Let (M, g) be a complete Riemannian manifpld : M — R a map of
classC? and assume that M admits a strictly convex function M — R. Consider the
dynamical systerg2.1)with initial conditions(2.3); assume that p and g are not conjugate
on|[0, T] relatively to(2.1). Then for all compact subseX c M with p, g € K, there are
only a finite number of solutions with image in K
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Proof. LetK C M be afixed compact setand assume that* ; is a sequence of pairwise
distinct solutions of2.1) and (2.3having images irK. The proof of the proposition will
be obtained by showing that andg must be conjugate relatively {@.1) on [0, 7]. To
this aim, since the image of thg’s remain in the compact sét, we can assume thatis
bounded onV, and therefore thaf; satisfies the Palais—Smale condition at every level on
£22,.4([0, T], M) as we can see, for instance, by the methods develodé&jn

Indeed, it is well known that; satisfies the Palais—Smale condition whéhassub-
quadratic growth i.e., when there exists constaiilg, C2; € R™ anda €]0, 2[, such that
V(x) < C1 + Co - dist(x, xg)* for all x € M and for some fixedg in M.

Now, assume by contradiction thatandg are not conjugate; then it must be:

lim L7(xx) = +oo, (3.2)
k— o0
for, otherwise(x;) would contain a Palais—Smale subsequence at the level
¢ =limsupLr(xx) < 400
k— 00

(recall that eachx; is a critical point ofL7), and therefore it would have a converging
subsequence. Sincér is a Morse function o2, ,([0, T], M) when p andq are not
conjugate, the lack of discreteness of the critical point§ofvould then imply thap and
g are conjugate an¢B.2)is proven.

Now, recall that eachy satisfies the conservation 1g2.2), and for eaclt € N set:

Er = g, &) + V(xp).

An immediate calculation gives:

1 T
Ex = =Lr(n) +2 / Vi (1) dr,
T 0

and sinceV is bounded inK from (3.2) we obtain that

lim E; = +o00.

k— o0
Again, by the boundedness Bffrom the above equality we get thatiy, 1) is uniformly
divergenton [0, T], i.e.,

lim [[gg%}g(xk(t),xk(t))] = +o00.

k— o0

For eacht € N, set:

b = |G,

so that
lim by = 400, (3.3)
k— 00

moreover we denote by, : [—bk, br] — M the curve:

@ =x (L 45— [—bx, bi]
Yie(§) = Xk 2 N 2by , SE ks Dk].
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One computes immediately

. _(T\ T , T

Yk(0) = Xk <§> : Z_bk’ NAGIIES E’ (3-4)
and

D D T T T2

Zis) = —ix = +5 — ) —. 3.5

a5 k) = g <2 t 2bk> a2 (35)

From (3.4) we obtain that, up to subsequences, we can assume;iftatconverges to a
non-zero vectorg € TM, and since
akk = [[VVxo)ll
is bounded, fron{3.3) and (3.5we get that the norm of the covariant derivat(ve/dr) y
is uniformly convergent to 0 on each compact subsét.of

We now usé.emma 3.1o conclude thag; converges in th€? topology on each bounded
interval of R to a non-constant affinely parameterized geodegsi®® — M. Sincey; has
image inK for all £ € N, it follows thaty has image inK and in particularF(y(s)) is
bounded. But the functioff o y : R — R is strictly convex by assumption, and it cannot
be bounded.

We therefore get to a contradiction and the proposition is proven. O

Remark 3.3. Itis not clear whether the non-conjugacy assumption for the ppiatsdg

can be omitted ifProposition 3.2even though the proof presented only works in this case.
The authors do not know any counterexample to the finiteness resBhopbsition 3.2

for the number of solutions joining two conjugate points, and it could be conjectured that,
possibly under stronger assumptions, one has a finite number of solutions also in the case of
boundary value problems with conjugate endpoints. This seems to be the case in a number
of circumstances in the case of one-dimensional prob[era§].

We will now focus our attention to the problem of determining under which conditions
we have finiteness of the numberalf solutions of(2.1) and (2.3) The central result in
this direction is based on a suitable assumption relating the growth at infinity of the convex
function F along the flow lines of the potenti&l. In order to present the result in a clearer
form, we will first state a version of the theorem that uses non-optimal assumptions, and
later Remark 3.5we will describe how to weaken the hypotheses.

Proposition 3.4. Let (M, g) be a complete Riemannian manifold : M — R a map
of classC? and assume that M admits a strongly convex functton M — R (see
Definition A.2) such that

e F has a minimum pointin M
e Fis non-increasing on each flow line &fV.

If p and g are non-conjugate of), 7] relatively to(2.1), then there are only a finite
number of solutions of the dynamical sys{@m)satisfying the boundary conditio(2.3).
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Proof. The proof will be obtained as an applicationffoposition 3.2by showing that,
under our assumptions, all the solutiongafl) and (2.3Jnust remain inside some compact
subset of\.

To this aim, first observe that sincdé has a minimum point inV, from the strict
convexity of F it follows that every subleveF¢ = F~1(] — oo, ¢]) is compact inM
(Proposition A.4. Secondly, observe that the non-increasing assumptiof €or the flow
lines of VV, i.e.,

g(VF,VV) =0

on M, implies thatF o x : [0, T] — R is strictly convex for every non-constant solution
x:[0, T] — M of (2.1). For, given such a solution one computes immediately:

d2
@F(X(t)) = —g(VF(x(), VV(x(1))) + Hess ) F(x (), x(1)), (3.6)

sinceF is strongly convex and’ is non-increasing on each flow line ¥V, i.e.,
—g(VF(x), VV(x)) = 0,

the right-hand side ¢B.6)is strictly positive except possibly at those instants when= 0.
Now, observe that every non-constant solutioof (2.1) only admits isolated zeros of the
derivativex.

Since convex functions on closed intervals attains their maximum at either one of the
endpoints, it follows that every solution (#.1) and (2.3must have image in the compact
subsetF?, whered = max{F(p), F(g)}. This concludes the proof. O

Remark 3.5. From the proof ofProposition 3.4t is clear that the same conclusion holds
if one requires the weaker assumption thdie non-decreasing along the flow linesvo¥
only outside some compact subset\df

More generally, the finiteness result Bfoposition 3.4holds under the assumption of
existence of a (hon-necessarily differentiable) proper fundtion — R such thatF' o x
is strictly convex for every (non-constant) solutioof (2.1).

As a corollary ofProposition 2.6 and 3. e obtain the following corollary.

Corollary 3.6. Under the assumption &froposition 3.4the seb, (recall (2.6)) has null
measure

Proof. By Proposition 3.4o is contained in the set of points &1 that are conjugate to
p on [0, T] relatively to(2.1), by Proposition 2.6he latter has null measure. O

4, Some examples

Example 4.1. If the potentialV = 0, then the dynamical syste(2.1) reduces to the
geodesic equation on the Riemannian manifadifl g). In this caseProposition 3.4ives
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us a finiteness result for geodesics joining two fixed non-conjugate points in a manifold
admitting a strictly convex functiof. This fact was provenifi11] under the more restrictive
assumption thaf is strongly convex. This result can be used in General Relativity to the
study of the so-calledravitational lensing effeqfsee for instancfl1,12)); in geometrical

terms, this phenomenon corresponds to the existence of multiple lightlike geodesics joining a
fixed eventp and a fixed observerin a Lorentzian manifold. In this conteX®roposition 3.2

tells us that if the Lorentzian metric &aticand if the underlying Riemannian manifold
admits a strictly convex function, then the gravitational lensing effect produces only a finite
number of images of the light source provided that the source and the observer are not
conjugate by lightlike geodesics.

Generalizations of this result to the case of non-static Lorentzian metrics is possible by
developing a theory analogue to that®éction 3for general Lagrangians action func-
tionals of the formC(x) = fa” L(t, x, x) dt. The case o§tationary(i.e., time-independent)
Lorentzian metrics is studied [d2].

Example 4.2. In the special case th@d1, g) is the Euclidean spad®”, then there are
several criteria to establish when the dynamical syqt2r) is such that all its solutions
satisfying the two-point boundary condition remain inside a compact set. For instance,
assume thatVvV]| is bounded:

IVVI = M. (4.1)

Letx : [0, T] — R”" be a solution 0{2.1) and (2.3)with ¢ = (¢1, ..., g»); denote by
x; . [0, T] — R theith coordinate ok and letr; € [0, T] be a maximum point fofx;|. We

have
T T s
/ X (s) / |:/ Xi(r) dri| ds

T K
5/ / IV V(x(r)| dr ds < MT?.
T T

lgi — xi(ti)| =

Hence, all the solutions @2.1) and (2.3have image in the closed ball centereg and of
radiusMT2,/x. Clearly, the same argument works under milder assumptions on the growth
of VV in replacement of the boundedness assumgtal).

Using the above criterion arRfoposition 3.2we obtain that, given the dynamical system
(2.1)in R", under suitable assumptions on the growtl@#/ ||, then there are only a finite
number of solutions joining two non-conjugate points. An example is given kpahéulum
equationt = — sinx in R; the corresponding focal decompositionks is studied if19].

The remarkable fact about the focal decompositiofRéfdetermined by the pendulum
equatiorf20, Fig. 1, p. 519]s that, as it was observed[i20], the very same decomposition

of R? appears independently in a totally different context on a recent paper in Quantum
Statistical MechanicE3].

Remark 4.3. Given a differential equation

¥ = f(t, x, %), (4.2)
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inIR", some authors (see for instarj26]) gives the following definition. Thequation (4.2)
is said to beegularif for any compact subs&’; C R” there exists a compact subset C
R" such that all the solutions @#.2) satisfyingx(a), x(b) € K1 remain insideK;. For
instance, whery is bounded then the same argumenEgample 4.2shows tha(4.2) is
regular.

It is easy to prove the following criterion to establish the regularit{20f).

Lemma 4.4. Given the dynamical syste(2.1) in the complete Riemannian manifold
(M, g), assume that

o lim,_ oo V(x) = —o0;

e V does not have critical points outside some compact subset of M

o the HessiarHessV is negative semi-definite on the orthogonal distribufiovi- outside
some compact subset of M

Then all the solutions : [0, T] — M of (2.1)that satisfy the boundary conditiof®.3)
have image inside a compact subset of M

Proof. Since lim._, o V(x) = —o0, then the closed sets
Ve=1{xeM: V() >c}

are compact for alt € R; we will prove that all the solutions gR.1) and (2.3yemain

in someV,. To this aim, letx : [0, T] — M be such a solution and lete [0, T] be a
minimum pointforg(r) = V(x(r)). We can clearly assume that]0, T[. Letc € R be large
enough so tha¥' V # 0 and Hes¥ is negative semi-definite on the orthogonal distribution
VV+ outsideV,. We have 0= g'(1) = g(VV(x(7)), x(1)), SO thati(t) € VV(x(1))*; on
the other handy(z) ¢ V., then

§"(v) = Hess V(i(1), (1) — g(VV(x(1))), VV(x(1)) <O,

against the assumption thats a minimum forg. This concludes the proof. O

For dynamical systems in Euclidean spaces, we have the following regularity criterion,
which is basically well known (seR0, Remark 2, p. 544for the one-dimensional and
time-dependent case).

Lemma 4.5. Consider the dynamical systg@1)in R”, with V : R” — R a function of
classC? satisfying the condition

1'%
Xi— < 0 (43)
Bxl-
foralli =1,...,n and for all x; with |x;| sufficiently large. Then all the solutions @.1)
satisfying the boundary conditiorf8.3) have image in a compact subsefrts.

Proof. Letx = (x1,...,x,) : [0, T] — R" be a solution of2.1) satisfying(2.3); for all
i=1,...,n,letr; € [0, T]be amaximum point fa; (). We can clearly assume €]0, T
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andx;(t;) # 0. If x(z;) > 0, the value ofy;(z;) cannot beoo large because otherwise,
by (4.3), it would bex;(t;) = —aV/ax;(x(t;)) > 0 andx(z;) could not be a maximum for
x;. Similarly, if x(z;) < 0, then—x(z;) cannot be very large, because otherwisg4)
Xi(t;)) = —aV/ax;(x(t;)) < 0 andx(t;) could not be a minimum fat;. This concludes the
proof. O

Examples of potential¥ satisfying the assumptions bémma 4.5are all polynomial
functions onR” containing only even powers of the variables and whose coefficients are
negative.

Example 4.6. If (M, g) admits a strongly convex functiafi, thenProposition 3.4an be
applied to the case tha# = —F. Actually, in this case the convexity assumption can be
weakened, and we obtain easily the following finiteness result for concave potentials. We
say thata mag : M — R is (strongly) concavef —G is (strongly) convex.

Proposition 4.7. Let (M, g) be a complete Riemannian manifold aid M — R be a
map of clas<2 which has an isolated maximum and which is strongly concave., Tien
dynamical systerf2.1) admits only a finite number of solutiors [0, T] — M satisfying
(2.3) provided that p and g are non-conjugate @) 7] relatively to(2.1).

Proof. The proof ofProposition 3.4an be repeataderbatimby settingFF = —V, except for
the following detail. Given a solutian: [0, T] — M of (2.1), the strict convexity oF ox is
now proven, rather than by the strong convexityFgby observing that Hegs'(x, x) > 0,
while —g(VF(x), VV(x)) = g(VV(x), VV(x)) > 0 except possibly whenpasses through
the unique critical point of/. O

5. Generically, the number of solutions of (2.1) and (2.3) isodd

One of the most powerful tools faountingthe number of critical points of &2 map
is given by Morse theory. In this section we use a classical result of infinite dimensional
Morse theory to conclude that the set of solution@af) and (2.3)under the non-conjugacy
assumption fop andg is either infinite or it has an odd number of elements.

The main technical assumption in order to develop the Morse theory on an infinite di-
mensional Hilbert manifold is the Palais—Smale condition; for this reason we will make the
assumption of subquadratic growth of the potential functioi he followingodd number
theoremis proven under the assumption that the underlying Riemannian manifdids
trivial topology, i.e., that it is contractible. This is the case, for instance, wiesdmits a
non-trivial convex function with a minimum point (s&eoposition A.3.

Recall that, given a topological spa&eand a ringR, theith Betti numbers;(X; R) of
X is the R-dimension of théth singular homology module df with coefficients inR; the
Poincaré formal power serieB, (X; R) of X in R in the variabler € R is the series:

Pa(X; R) =) Bi(X; R)A.
i=1
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Proposition 5.1. Suppose thatM, g) is a complete and contractible Riemannian manifold
p e M,andletV : M — R be aC? map which has subquadratic growite., there exists
constantLCy, C2 € Rt anda €]0, 2[, such that

V(x) < C1+ Cy - dist(x, xp)*

for all x € M and for some fixedg in M.
Then for all eveni, the sebs; (recall (2.6)) has null measure in M

Proof. By Proposition 2.6it suffices to show that, under our assumptions, there are either
infinitely many or an odd number of solutions @.1) satisfying(2.3) if p andg are not
conjugate on [0T] relatively to(2.1).

To this aim, assume that and ¢ are not conjugate, so that the Lagrangian action
functional Ly (defined in(2.4)) is a Morse function on the complete Hilbert manifold
£2,4(0, T], M). SinceV has subquadratic growth, thér satisfies the Palais—-Smale con-
dition ong2, ([0, T], M) and itis bounded from below. Denote 8y , the set of solutions
of (2.1) satisfying(2.3); for x € S, , denote byu(x) the number of conjugate instants
along x (recall Definition 2.7). Then, we can write the classical Morse relations for the
critical points of L7 (see for instancfl6,17)), that are expressed by the following equality
of formal power series in € R:

Y M =Pu(2,,4([0, T], M) R) + (1+ 1) Q(), (5.1)

xeSpq

where P, (2, 4([0, T], M); R) is the Poincaré formal power series@f, ,([0, T], M) in
R, andQ() is a formal power series ih with coefficients inN (_{4oo}.

SinceM is contractible, then so i, ,([0, T], M), hencep; (2, ,([0, T], M); R) = 0
forall i > 1 andpo(£2,,4([0, T], M); R) = 1. Then, setting. = 1 in (5.1), we obtain the
following equality:

cardinality ofS, ;, = 14+ 2 Q(1).

Since Q(1) € NJ{+o0c}, the above equality says that the cardinalitySf, is either
infinite or odd. This concludes the proof. O

If the manifold M is not contractible, then, under the subquadratic growth assumption
for the potentialV, the number of solutions of the dynamical syst@mn ) satisfying(2.3)
is infinite; this is easily proven using the Ljusternik—Schnirelman theory. Recall that the
Ljusternik—Schnirelman categocat(X) of a topological spac¥ is the minimal cardinality
(possibly infinite) of a covering ok by closed and contractible subsets. The main result
of the Ljusternik—Schnirelman theory is that afiy functional f : X — R on a complete
Banach manifoldX that satisfies the Palais—Smale condition at every level and that is
bounded from below, has at least €&} critical points inX.

Proposition 5.2. Assume thatM, g) is a complete Riemannian manifold with M non-
contractiblg and letV : M — R be a map of clas€? having subquadratic growttThen
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forall p, g € M, there are infinitely many distinct solutions(@f 1) satisfying the boundary
conditions(2.3).

Proof. By a well known result of Fadell and Husseil], if M is not contractible the
Ljusternik—Schnirelman category @2, ,([0, T], M) is infinite. The conclusion follows
immediately from the Ljusternik—Schnirelmann theory applied to the functibpal O
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Appendix A. Convex functions on Riemannian manifolds

The theory of convex functions has its natural setting in Riemannian geometry. In this
Appendix we recall a few basic facts and examples of Riemannian manifolds admitting
convex functions; a very comprehensive reference for the interested reader is the book by
Udriste[24]. Throughout the sectiofM, g) will denote a complete Riemannian manifold.

Definition A.1. A subsetA C M is said to beotally convexf it contains every geodesic
segment between any two of its points. A functisn A ¢ M — R defined on a totally
convex subset of M is said to be convex if o y : [a, b] — R is convexfor all geodesic
y . la,b] — A; F is strictly convexif F o y is strictly convex for every non-constant
geodesig in A.

Whenever the domain of a convex function is not specified it will be implicitly assumed
thatA = M.

For a functionF : M — R of classC?, the convexity is equivalent to the positive
semi-definiteness of the Hessian H&s<learly, if HessF is positive definite in the com-
plement of a finite set, theA is strictly convex. We give the following definition.

Definition A.2. Given a function of clas€?F : M — R, we say thaf is strongly convex
if there exists a (continuous) function: M — R* such that

Hess F(x)(v,v) > A(x)g(v,v), Vxe M, YveTM.

Itis easy to see that if : M — R is a convex function which is bounded from above,
thenF is constant; it follows in particular that compact Riemannian manifolds do not admit
non-constant convex functions. More generally, if a complete Riemannian ma@ifolg)
admits a non-constant convex function, then its volume is infi@Bg As to the regularity
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of a convex function?, we have that' : A — R is continuous at the interior points df,
moreover, a convex function o¥ is Lipschitz continuous on every compact subsetof

For functionsF of classC* or C? on M the notion of convexity can be given respectively
in terms of the gradier¥ F and the Hessian He#sof F. A C1 mapF : A — R is convex
if and only if for all x, y € A and all geodesic segment: [a,b] — A fromx to y itis
F(y) > F(x) + g(VF(x), y(a)); F is strictly convex if the inequality is strict whens y.

A C?mapF : A — Ris convex if and only if its Hessian Hessis positive semi-definite
in A.

The existence of a non-constant convex function does not have implications on the topo-
logical structure of the manifold, except for the property of non-compactness. Namely, by
a result of Green and Shioarf#, for every non-compact manifolt there exists a com-
plete Riemannian metrig on M and a non-constant smooth functién: M — R which
is convex in(M, g). On the other hand, the existence of a non-constant function satisfying
further properties, like for instance admitting an isolated minimum point, or such that its
sublevels are compact, implies substantial information about the topological structure and
the metrical structure of the manifold (see for instafid¢. For instance, it is not hard to
prove the following proposition.

Proposition A.3. If (M, g) admits a strictly convex function that has a strict local minimum
then M is diffeomorphic t&R".

Given asimply connected Riemannian manifighf] g) with non-positive sectional curva-
ture, then for everyo the mapx > dist(x, xp)? is convex. Théeight functior(x, y, z) + z
defined on the paraboloigd= x? + y? is an example of a strictly convex smooth function
on a manifold with positive scalar curvature. A class of examples of Riemannian mani-
folds admitting smooth convex functions with non-isolated zeroes are the tangent bundles
TM of Riemannian manifold$M, g), when endowed with the Sasaki metgig the map
v — g(v, v) is convex in(TM, gs).

Concerning thegrowth at infinityof strictly convex functions, we have the following
proposition.

Proposition A.4. LetF : M — R be a strictly convex function of clagg. Assume that F
has an isolated critical point. Thethis critical point is unigueit is a minimum point for
F, andlim_ o F(x) = +00, i.e., each subleveF¢ = F~1(] — oo, c]) is compact inM.

Proof. See for instancgl1]. O

We will briefly describe some well known constructions of convex functions.

Recall that goleof (M, g) is a pointxg € M such thatexp : 7,,M — M is a global
diffeomorphism. For instance, ¥ is simply connected and it has non-positive sectional
curvature, then by the Hadamard theorem every poit @ a pole.

Example A.5. Given a manifold with a poleg, then for every € M there exists a unique
geodesig, : [0, 1] — M from xg to x; theradial curvature relative to the poleg of M at
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x is defined to be the maximum of the sectional curvatures of all planEsWihcontaining
the directiony, (1).

If (M, g) admits a poleg such thatits relative radial curvature is everywhere non-positive,
then the functionF(x) = dist(x, x)? is strictly convex. Observe that, in this casgjs an
isolated minimum point foF'.

Convex functions exist also on manifolds having non-negative sectional curvature. Recall
thatarayin (M, g) is a geodesic (parameterized by arc lengthJ0O, +oco[— M such that
vljo,71 is minimal for allT > 0, i.e., such that digf(0), ¥(T)) = T forall T > 0. Through
every point of a non-compact complete Riemannian manifold there exists a ray.

Example A.6. Given a rayy : [0, +0o[— M in M, the Busemann functiof4,6] »,
associated tg is given by

ny(x) = ,ﬂToo[t — dist(x, p(1))].

If (M, g) is a complete, non-compact Riemannian manifold whose sectional curvature is
non-negative outside a compact subsetgfthen eachy,, is convex[10]. In particular, in

this situation, the supremumy), of all Busemann functions associated to the rays starting
at a fixed pointp € M is a convex function that is non-constant on every non-constant
geodesic ofif; moreover, the sublevels af, are compact. Observe that given a convex
function F : M — R which is non-constant on every non-constant geodesic, then for all
strictly increasing and strictly convex functign: R — R the composition o F is strictly
convex onM. Observe also that, in general, is not differentiable; for instance, (i, g)

is a Euclidean space anpde M is the origin, them,(x) = ||x|.

It is easy to see that if : A — R is a convex function which is not constant on every
non-constant geodesic ia and if ¥ : R — R is a strictly convex function, then the
composition? o F is strictly convex inA.

Killing fields give rise to convex functions provided that the associated Killing curvature
of M is non-positive; recall that i is a Killing vector field on(M, g), then the associated
Killing curvatureat p € M is the maximum of the sectional curvatures of all planes, i
containing the directio(p).

ExampleA.7. If YisaKilling vectorfield on(M, g) whose Killing curvature is non-positive,
then the mapgF(x) = (1/2)g(Y(x), Y(x)) is convex. Clearly, the minimum points éf are
the zeroes of ; more generally, the critical points @éf are precisely the pointse M such
that the integral curve df throughx is a geodesic.
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