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Abstract

We study the solutions joining two fixed points of a time-independent dynamical system on a
Riemannian manifold(M, g) from an enumerative point of view. We prove a finiteness result for so-
lutions joining two pointsp, q ∈ M that are non-conjugate in a suitable sense, under the assumption
that(M, g) admits a non-trivial convex function. We discuss in some detail the notion of conjugacy
induced by a general dynamical system on a Riemannian manifold. Using techniques of infinite
dimensional Morse theory on Hilbert manifolds we also prove that, under generic circumstances,
the number of solutions joining two fixed points is odd. We present some examples where our theory
applies.
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1. Introduction

Given a second order differential equationy′′ = f(y′, y, t) in the Euclidean planeR2,
several authors have studied the problem of determining the number of its solutions con-
necting two given points(t0, y0) and(t1, y1) in the plane. This is the simplest and the oldest
boundary value problem; accordingly, there is a vast literature in the context of pure and
applied mathematics, as well as other sciences.
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A first natural question to ask is under which conditions there are only a finite number of
solutions joining two fixed points. For instance, when the right-hand side of the equation is
analytic, then the number of solutions of the boundary value problem are zeros of a suitable
analytic function, hence they are a finite number if one has a priory bounds on the solutions
of the problem[2].

More generally, if one fixes the initial point(t0, y0), then it is interesting to study how
the number of solutions varies when the final endpoint(t1, y1) varies in the plane, and
what kind of decomposition of the planeR2 = ⋃∞

i=0 σi is obtained, whereσi is de-
fined as the set of those points(t1, y1) for which there are exactlyi solutions of the
problem.

This decomposition, calledfocal decomposition(or alsoσ-decompositions) by some
authors[20] was introduced in[18] and developed by several other authors (see[14,20]and
the references therein). The deepest result proven concerning focal decompositions[20]
is that, under suitable technical assumptions, eachσi is the union of strata of an analytic
Whitney stratification, and thatσi has empty interior wheni is even. Many techniques
involved do not generalize to the case of higher dimensional systems of differential equations
(see for instance[20, Section 8]), and there is not much literature on the topic concerning
higher dimensional systems.

Another direction of investigation consists in studying similar boundary value problems
in curved spaces; it is absolutely evident that both the topology and the metric (i.e., the
curvature) of the configuration space has a deep influence on the number of solutions of
a two-point boundary value problem. In this paper we study the solutions of autonomous
dynamical system on a Riemannian manifold of the form(D/dt)ẋ = −∇V(x); interpreting
M as the configuration space of a mechanical system, then these solutions represent the
trajectories of masses under the influence of a conservative force with potential−V . We fix
an initial valuep = x(0) inM, a positive value of the time parameterT , and we look at the
decomposition ofM into the setsσi, i = 0, . . . ,+∞, whereσi consists of all points ofM
that can be reached after a timeT by exactlyi distinct trajectories of the dynamical system
starting at the instantt = 0 in p.

Our first aim is to establish sufficient conditions on(M, g) andV to guarantee thatσ∞
has null measure inM, i.e., that for almost all choice ofq, the number of trajectories of the
dynamical system that start atp and terminate atq after a fixed time is finite.

In the case of non-flat metrics, the problem is interesting also in the case thatV = 0,
i.e., when the dynamical system reduces to the geodesic equation in(M, g). For instance,
finiteness results for Riemannian geodesics between two fixed points give analogous re-
sults for lightlike geodesics between a point and an observer of a (conformally) stationary
Lorentzian manifold. This kind of results can be applied in Astrophysics[11,12] to obtain
information on the so-calledgravitational lensing effectin General Relativity, which pro-
duces the phenomenon that an astronomer observes multiple images of the same light (or
radio) source[22].

Our main finiteness results (Section 3) use an assumption that can be considered both
topological and metrical on(M, g), namely, we prove that if(M, g) admits a non-trivial
proper convex function which is non-increasing on the flow lines of the gradient ofV , then
the number of trajectoriesx : [0, T ] → M of the dynamical system joining two pointsp and
q is finite for almost all pairsp andq. Moreover, we prove that under suitable boundedness



A. Masiello, P. Piccione / Journal of Geometry and Physics 49 (2004) 67–88 69

on the growth of the potentialV at infinity, such number is generically odd, i.e., the setsσ2i
defined above have null measure for alli = 1, . . . ,+∞.

In order to clarify the result, it may be helpful to discuss a simple but instructive ex-
ample that was our initial motivation for the convexity assumption. Let us look at the
caseV = 0 and the corresponding dynamical systems, whose solutions are geodesics in
(M, g). Probably the first finiteness result for this situation is the well known theorem of
Hadamard, that states that ifM is simply connected,(M, g) is complete and it has negative
sectional curvature everywhere, then between any two points there exists auniquegeodesic.
In this situation, for each pointp ∈ M, the mapF(x) = dist(p, x) is strictly convexon
M, i.e.,F ◦ γ : R → R is strictly convex for all non-constant geodesicγ : R → M.
On the other hand (strictly), convex functions exist on a larger class of (non-compact)
Riemannian manifolds (seeAppendix A), and it is possible to prove that, in manifolds
that admit strictly convex proper functions there are only a finite number of geodesics be-
tween two non-conjugate points[11]. In this paper we exploit the methods of[11,12] to
treat the case of general conservative dynamical systems; the main idea is that solutions
of a general conservative dynamical system remaining inside a compact subset and with
diverging energytend to geodesics in a suitable sense (seeLemma 3.1and the proof of
Proposition 3.2), i.e., the gravitational forces have a neglectible effect on masses with very
large kinetic energy, whose trajectories tend to bestraightas the kinetic energy goes to infin-
ity. In this situation, in order to obtain finiteness results one can apply the standard convexity
techniques.

Observe that the existence of convex functions depend crucially on the metric (that defines
the geodesics), but also on the topology ofM: it is well known that compact manifolds do
not admit non-constant convex functions, and that a manifold that admits a strictly convex
function with a minimum point is diffeomorphic toRn. A short survey of the basic properties,
examples and constructions with convex functions in Riemannian manifolds is presented
in Appendix A.

It turns out that, as in the geodesic case, the points that areconjugaterelatively to a
dynamical system play a crucial role in the theory. Roughly speaking, two pointsp andq on
M are conjugate relatively to a dynamical system (seeDefinition 2.1) if there exist a homo-
topy {xs}s∈]−ε,ε[ of solutions of the dynamical system satisfying the boundary conditions
xs(0) = p andxs(T ) = q, up to infinitesimal of order greater than one. However, it must be
noted that, unlike the case of geodesics, the set of solutions of a general dynamical system
is not invariant by arbitrary affine reparameterizations, so that the notions of conjugacy,
Jacobi fields(Definition 2.2) and ofexponential map(see the proof ofProposition 2.6)
relative to a dynamical system require special attention. A detailed presentation of the main
properties of conjugate points relative to a dynamical system is given inSection 2; among
other things, we prove that the set of points that are conjugate to a given one has null measure
(Proposition 2.6).

The finiteness problem for solutions of the dynamical system satisfying the two-point
boundary condition is studied inSection 3; we first give a local finiteness result
(Proposition 3.2), and then, using further assumptions on the convex function, we prove
the global finiteness result for solutions joining two non-conjugate points (Proposition
3.4). As a matter of fact, passing from the local to the global result is possible for those
dynamical system having the properties that all their solutions with endpoints inside a
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compact set do not leave a possibly larger compact subset ofM. Such differential equa-
tions are defined to beregular in some references (see for instance[20]); observe that
the regularity plays a crucial role also in many results of[20]. In this language, the
existence of a strictly convex function onM that is non-increasing on the flow lines
of ∇V is a sufficient condition that guarantees the regularity of the dynamical system.
Other regularity criteria, as well as examples where our theory applies are discussed in
Section 4.

Finally, in Section 5we apply techniques of Critical Point Theory, more precisely the
Morse theoryand theLjusternik–Schnirelman theory, to study theparity of the number
of solutions between two non-conjugate points (Proposition 5.1), and to show that ifM
is not contractible then the number of solutions between any two points is never finite
(Proposition 5.2). These theories require some technical assumptions on the variational
setup; for this reason we assume a suitable control on the growth of the potentialV at
infinity.

2. Dynamical systems on Riemannian manifolds: conjugate points and focal
decomposition

In this section we introduce and discuss briefly the main notions about conservative
dynamical systems whose configuration space is a Riemannian manifold. Some of the results
presented here are not new, but they are nevertheless stated and proved in our context for
the reader’s convenience.

Let (M, g) be ann-dimensional Riemannian manifold; we will denote by∇ the covariant
derivative of the Levi–Civita connection ofg and byR the curvature tensor of∇, chosen
with the following sign convention:

R(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ] .

For a vector fieldv along a curvex in M, we will use both notationsv′ and(D/dt)v to
denote the covariant derivative ofv alongx; the latter symbol being used almost exclusively
to denote the covariant derivative(D/dt)ẋ of the tangent fielḋx. The symbol‖ · ‖ will
denote thenormof tangent vectors toM induced byg. For the basics of the geometry of
Riemannian manifolds we refer to the textbook[5].

Given a sufficiently regular mapf : M → R, let us denote by∇f and Hessf , respec-
tively the gradient and the Hessian off . Recall that∇f is the vector field inM defined by
the relationg(∇f(p), ·) = df(p), and that Hessf is the(2,0)-tensor field whose value at
the pointp ∈ M is a symmetric bilinear form onTpM defined by

Hesspf(v,w) = g(∇v∇f(p),w), v,w ∈ TpM.

Using the metricg, we will also think of the Hessian as ag-symmetric linear endomorphism
Hesspf : TpM → TpM defined by

g(Hesspf(v), w) = Hesspf(v,w), ∀ v,w ∈ TpM.
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2.1. Conservative dynamical systems on M

Let V : M → R be a map of classC2 and consider the following differential equation
for curves inM:

D

dt
ẋ = −∇V(x). (2.1)

In this section we will discuss the notion of conjugate points along a solution of(2.1); this
notion generalizes the classical notion of conjugate points along a geodesic in Riemannian
or semi-Riemannian geometry. We will refer toEq. (2.1)as adynamical systemonM with
potential−V .

Since(2.1) is autonomous, then the set of its solutions is invariant by time-translation
and by time-reversing reparameterizations. Note however that, unlessV is locally constant,
the set of solutions of(2.1) is not invariant by arbitrary affine reparameterizations.

For this reason, in our setup we will choose an interval of the form [0, T ] as the basic
domain of our curves, and, unlike the case of conjugate points in semi-Riemannian geometry,
the notion of conjugate points induced by(2.1) will be dependent on the choice of such
interval.

An immediate computation shows that the solutions of(2.1) satisfy the following con-
servation law:

1
2g(ẋ, ẋ)+ V(x) ≡ Ex (constant). (2.2)

It is well known that the solutions of(2.1) that satisfy the boundary conditions:

x(0) = p, x(T ) = q, (2.3)

with p, q ∈ M are precisely the stationary points of the Lagrangian action functional:

LT (x) =
∫ T

0

[
1

2
g(ẋ, ẋ)− V(x)

]
dt, (2.4)

defined in the smooth Hilbert manifoldΩp,q([0, T ],M) of all curvesx : [0, T ] → M

of classH1 in M such thatx(0) = p and x(T ) = q. Since(M, g) is complete, then
alsoΩp,q([0, T ],M) is a complete Hilbert manifold. The functionalLT is of classC2 on
Ωp,q([0, T ],M). Given a critical pointx ∈ Ωp,q([0, T ],M) of LT , the second variation
d2LT (x) of LT at x is easily computed to be the following bounded symmetric bilinear
form:

d2LT (x)(v,w) = I(v,w) =
∫ T

0
[g(v′, w′)+ g(R(ẋ, v) ẋ, w)− Hessx V(v,w)] dt,

(2.5)

defined in the Hilbert spaceTxΩp,q([0, T ],M), which consists of allH1 vector fields along
x vanishing at 0 and atT .

Our main goal is to study the number of solutions of(2.1) that satisfy the boundary
conditions(2.3); for all i = 0,1, . . . ,+∞, we set:

σi = {q ∈ M : there exist preciselyi solutions of(2.1)and(2.3)}. (2.6)

Obviously, theσi’s, i = 0, . . . ,+∞ are pairwise disjoint and they form a partition ofM.
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2.2. Conjugate points defined by(2.1)

Recall that a critical pointx for the action functionalLT in Ωp,q([0, T ],M) is said to
be non-degenerateif the second variation d2LT (x) is a strongly non-degenerate bilinear
form onTxΩp,q([0, T ],M), i.e., when the self-adjoint operator onTxΩp,q([0, T ],M) that
represents d2LT (x) is an isomorphism. The critical pointx is said to bedegenerateif it is
not non-degenerate.

Definition 2.1. A point q ∈ M is said to beconjugate to p on[0, T ] relatively to(2.1) if
there exists a degenerate critical pointx of LT in Ωp,q([0, T ],M).

By the time-orientation invariance, the notion of conjugacy on [0, T ] is clearly symmetric
in p andq, so that, whenq is conjugate top on [0, T ] relatively to(2.1), we will say thatp
andq are conjugate points.

The notion of conjugacy can be given in terms of solutions of the linearization of(2.1)
is as follows.

Definition 2.2. A V-Jacobi fieldalong the solutionx is a vector fieldJ alongx that satisfies
the linearization ofequation (2.1), which is easily computed as:

J ′′ − R(ẋ, J )ẋ+ Hessx V(J ) = 0. (2.7)

Thus, by definition,V -Jacobi fields along a solutionx are variational vector fields that
correspond to variations ofx by solutionsxs : [0, T ] → M of (2.1); here, byvariationsof
x by solutions of(2.1)we mean a familys �→ xs of solutions of(2.1)such thatx0 = x and
such thats �→ xs(0) is of classC2. This statement is made more precise in the following
lemma.

Lemma 2.3. AC2 vector field J along a solutionx : [0, T ] → M of (2.1)is a V-Jacobi field
iff there exists a variation{xs}s∈]−ε,ε[ of x by solutions of(2.1) in [0, T ] with variational
vector field J, i.e. (d/ds)xs(t)|s=0 = J(t) for all t ∈ [0, T ].

Proof. Clearly, variational vector fields corresponding to variations by solutions ofx satisfy
the linearizedequation (2.7). Conversely, assume thatJ satisfies(2.7), let ε > 0 be small
enough, letγ :] −ε, ε[→ M be a smooth curve satisfyingγ(0) = x(0) andγ̇(0) = J(0) and
letW :] − ε, ε[→ TM be a smooth vector field alongγ such thatW(0) = ẋ(0) and such that
W ′(0) = J ′(0). For eachs, lett �→ xs(t)denote the maximal solution of(2.1)inM satisfying
xs(0) = γ(s) and(d/dt)xs|t=0 = W(s). Clearly,x0 ≡ x on [0, T ], and by continuity, for
ε > 0 small enough,xs is defined on [0, T ]. Let J̃ denote theV -Jacobi variational field
alongx corresponding to{xs}; one has̃J(0) = γ̇(0) = J(0) andJ̃ ′(0) = W ′(0) = J ′(0),
so thatJ̃ = J and we are done. �

By an easy boot-strap argument and integration by parts in(2.5)one proves the following
lemma.
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Lemma 2.4. Let x ∈ Ωp,q([0, T ],M) be a critical point ofLT . Then, a vector fieldJ ∈
TxΩp,q([0, T ],M) is a V-Jacobi field along x if and only if J is in the kernel Ker(I) of I,
i.e., if and onlyI(J,w) = 0 for all w ∈ TxΩp,q([0, T ],M).

We are now ready to prove the relation between conjugate points andV -Jacobi fields.

Proposition 2.5. A pointq ∈ M is conjugate to p on[0, T ] relatively to(2.1) if and only
if there exists a solutionx : [0, T ] → M of (2.1)satisfying(2.3)and a non-zero V-Jacobi
field J along x such thatJ(0) = J(T ) = 0.

Proof. If there exists a non-zeroV -Jacobi fieldJ alongx with J(0) = J(T ) = 0, then
J ∈ TxΩp,q([0, T ],M); moreover byLemma 2.4such Jacobi field would be a non-zero
element in Ker(I). This implies thatx is a degenerate critical point ofLT inΩp,q([0, T ],M),
and sop andq are conjugate.

On the other hand, assume thatp andq are conjugate on [0, T ] relatively to(2.1); then,
by definition, there exists a degenerate critical pointx ofLT inΩp,q([0, T ],M), i.e., a point
x for which the bilinear formI of (2.5) is not strongly non-degenerate. Now, we claim that
weak and strong non-degeneracy are equivalent for the bilinear form(2.5), i.e., thatI is
strongly non-degenerate if and only if Ker(I) = {0}. To see this, observe thatI is represented
on the Hilbert spaceTxΩp,q([0, T ],M) by a Fredholm operator of index zero. Namely,

the bilinear form(v,w) �→ ∫ T
0 g(v

′, w′)dt is represented by a positive isomorphism of
TxΩp,q([0, T ],M), which is a Fredholm operator of index 0. Moreover, the bilinear form

(v,w) �→
∫ T

0
[g(R(ẋ, v)ẋ, w)− HessV(v,w)] dt

is continuous in theC0 topology, and by the compact inclusion ofC0 in H1 it follows that
it is represented by a compact self-adjoint operator onTxΩp,q([0, T ],M). Since compact
perturbations of Fredholm operators are still Fredholm operators with the same index, it
follows thatI is represented by a Fredholm operator of index zero.

So,I is strongly non-degenerate if and only if Ker(I) = {0}, and the conclusion follows
easily fromLemma 2.4. �

We have now our setup ready to prove the genericity of the non-conjugacy condition. The
technique is analogue to the case of conjugacy by geodesics in Riemannian manifolds: the
conjugate points are characterized ascritical valuesof a differentiable map (the analogue
of the Riemannian exponential map) and the conclusion is obtained as an application of
Sard’s theorem.

Proposition 2.6. Letp ∈ M be fixed. The set of pointsq ∈ M that are conjugate to p on
[0, T ] relatively to(2.1)has null measure in M.

Proof. For p ∈ M, we introduce aC1 mapFp : A ⊂ TpM → M defined on an open
neighborhood of 0 inTpM by setting

Fp(v) = x(T ),
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wherex : [0, T ] → M is the unique solution of(2.1) with x(0) = p and ẋ(0) = v.
The differentiability ofFp is standard: as in the case of the exponential map in Rieman-
nian geometry,Fp is obtained from the flow of someC1 vector field inTM, which is of
classC1.

The vectorv ∈ A is a critical point forFp, i.e., the differential d(Fp)v : TpM → TFp(v)M

is not surjective, iffx(T ) = Fp(v) is conjugate top alongx. Namely, usingLemma 2.3, it
is easily computed:

d(Fp)v(w) = J(T ),

whereJ is the uniqueV -Jacobi field alongx such thatJ(0) = 0 andJ ′(0) = w. Thus,
d(Fp)v is not surjective iff Ker(d(Fp)v) �= {0}, and byProposition 2.5this is equivalent to
Fp(v) being conjugate top.

So, the pointsq that are conjugate top are the critical values ofFp, and the conclusion
follows from Sard’s theorem. �

2.3. Conjugate points along a solution of(2.1)

We fix a solutionx : [0, T ] → M of (2.1) and we introduce the notion of a conjugate
point (or better, of conjugate instant) alongx is as follows.

Definition 2.7. Let x : [0, T ] → M be a solution of(2.1). An instantt0 ∈]0, T ] in M
is said to beconjugatealongx if there exists a non-zeroV -Jacobi fieldJ alongx with
J(0) = J(t0) = 0. Themultiplicity mul(t0) of the conjugate instantt0 is defined to be the
dimension of the space ofV -Jacobi fields alongx such thatV(0) = V(t0) = 0; clearly,
mul(t0) ≤ n.

By Proposition 2.5, an instantt0 ∈]0, T ] is conjugate alongx if and only if the pointx(t0)
is conjugate tox(0) on [0, t0] relatively to(2.1), beingx|[0,t0] the corresponding degenerate
critical point ofLt0 in Ωx(0),x(t0)([0, t0],M).

Given a solutionx : [0, T ] → M of (2.1), we will denote byJx then-dimensional vector
space of allV -Jacobi fieldsJ alongx satisfyingJ(0) = 0. For allt0 ∈]0, T ], let

φt0 : Jx → Tx(t0)M, (2.8)

denote the evaluation mapJ �→ J(t0); observe that the fact thatt0 is a conjugate in-
stant alongx if and only if φt0 is not an isomorphism. Moreover, ift0 is a conjugate
instant alongx, then its multiplicity equals the codimension of the image Im(φt0)
in Tx(t0)M.

The following result is totally analogous to the case of Jacobi fields along a semi-
Riemannian geodesic.

Lemma 2.8. If J1, J2 areV -Jacobi fields along x then the quantityg(J ′
1, J2) − g(J1, J

′
2)

is constant. In particular, if J1, J2 ∈ Jx, theng(J ′
1, J2)− g(J1, J

′
2) ≡ 0.
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Proof. Using(2.7) and the symmetry of the curvature tensor and of the Hessian operator
one computes immediately:

d

dt
(g(J ′

1, J2)− g(J1, J
′
2))

= g(J ′′
1 , J2)− g(J1, J

′′
2 )

= g(R(ẋ, J2)ẋ, J1))− HessV(J1, J2)− g(R(ẋ, J1)ẋ, J2))+ HessV(J2, J1) = 0.

�

Using the conservation law ofLemma 2.8satisfied by theV -Jacobi fields it is possible to
adapt the classical proof of discreteness of the set of conjugate points along a Riemannian
geodesic to prove the following proposition.

Proposition 2.9. Let x : [0, T ] → M be a solution of(2.1); then, the set of conjugate
instants along x is finite.

Proof. Let t0 ∈]0, T ] be a conjugate instant alongx; to prove the proposition we will
show that there are no other conjugate instants in a neighborhood oft0. To this aim, set
k = mul(t0) and chooseJ1, . . . , Jn a basis of the spaceJx.

Clearly, the vectorsJk+1(t0), . . . , Jn(t0) form a basis of Im(φt0); moreover, their deriva-
tivesJ ′

1(t0), . . . , J
′
k(t0) form a basis for the orthogonal Im(φt0)

⊥. To see this, observe that
thesek vectors inTx(t0)M are linearly independent, because the vectors(Ji(t0), J

′
i (t0)),

i = 1, . . . , k are linearly independent andJi(t0) = 0 for i = 1, . . . , k. To prove the claim
now simply observe that, byLemma 2.8, J ′

1(t0), . . . , J
′
k(t0) do indeed belong to the orthog-

onal space Im(φt0)
⊥, because:

g(J ′
i (t0), Jj(t0))= g(J ′

i (t0), Jj(t0))+ g(Ji(t0), J ′
j(t0))

= g(J ′
i (0), Jj(0))+ g(Ji(0), J ′

j(0)) = 0,

for all i = 1, . . . , k and allj = k + 1, . . . , n. SinceTx(t0)M = Im(φt0) ⊕ Im(φt0)
⊥, we

conclude that the family

J ′
1(t0), . . . , J

′
k(t0), Jk+1(t0), . . . , Jn(t0)

is a basis ofTx(t0)M.
We now define a family{J̃ i}ni=1 of C2 vector fields alongx by settingJ̃ i = Ji for

i = k + 1, . . . , n, and

J̃ i(t) =


Ji(t)

t − t0 for t �= t0,

J ′(t0) if t = t0,

i = 1, . . . , k.

An instant t �= t0 in ]0, T ] is conjugate alongx iff h(t) = det(J̃1(t), . . . , J̃n(t)) = 0
because fort �= t0 the vanishing of this determinant is equivalent to the vanishing of
det(J1(t), . . . , Jn(t)) = 0. Now, since thẽJi(t0)’s are linearly independent, it ish(t0) �= 0,
and by continuityh(t) �= 0 in a neighborhood oft0. This concludes the proof. �
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The notion of conjugate instants along a solution of(2.1) is related to the Morse index
of the action functionalLT at the critical pointx. Recall that given aC2 mapF on a
differentiable manifoldX and a critical pointx ∈ X of F , then theMorse indexof F atx is
the index of the second variation d2F(x) onTxX, which is the supremum of the dimensions
of the subspaces ofTxX on which the symmetric bilinear form d2F(x) is negative definite.
We state now an extension to a solution of(2.1)of the classical Morse Index Theorem for
geodesics joining two points on a Riemannian manifold.

Proposition 2.10. Let x : [0, T ] → M be a solution of(2.1) satisfying(2.3), i.e., x is a
critical point of the functionalLT (2.4) inΩp,q([0, T ],M). Then the Morse index ofLT at
x is finite, and it is equal to the number of conjugate instants along x in]0, T [ counted with
multiplicity.

The proof is quite similar to the proof of the Morse Index Theorem for Riemannian
geodesics (see for instance[8, Theorem 2.4], or the books[13,16]). An extension of the
index theorem has been recently obtained in[21] in the case ofnon-convexHamiltonian
systems.

3. Finiteness of the number of solutions for the two-point boundary value problem

In this section we will prove the finiteness of the number of solutions of(2.1) joining
two non-conjugate pointsp andq in a Riemannian manifold(M, g) that admits non-trivial
convex functions.

We start with a technical lemma concerning theC2 convergence of sequences of curves
whose covariant acceleration goes to zero uniformly. The result is trivial when the metric
is flat, i.e., when the covariant acceleration coincides with the second derivative. For the
general case the argument is more delicate, due to the fact that for the use of local coordinates
one first needs to prove the uniform convergence of the sequence.

Lemma 3.1. Let (M, g) be a complete Riemannian manifold, let yn : [a, b] → M be a
sequence ofC2 maps such thaṫyn(a) converges tov0 in TM and such that‖(D/dt)ẏn‖
converges to0 uniformly in [a, b]. Then, yn converges in theC2 topology to the(affinely
parameterized) geodesicy : [a, b] → M with y′(t0) = v0.

Proof. We will show first that‖ẏn‖ is uniformly bounded in [a, b]; to this aim, setun =
‖(D/dt)ẏn‖, denote byδn = g(ẏn, ẏn) and observe that|δ′n| ≤ 2un

√
δn ≤ 2un(δn + 1). It

follows from Gronwall’s inequality that:

δn ≤ K ek(b−a),

whereK = supn[δn(a) + 2
∫ b
a
un dt] and k = 2 supn‖un‖∞. Hence,‖ẏn‖ is uniformly

bounded; setC = supn‖ẏn‖∞.
Let y : [a, b] → M be the geodesic witḣy(a) = v0 and letr > 0 be anormal radiusfor

all the points of the image ofy, i.e., the exponential map expy(t) is a diffeomorphism on the
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ball of radiusr centered at the origin ofTy(t)M for all t ∈ [a, b]. Chooseε > 0 withCε < r
and with‖v0‖ε < r.

We make the following claim: iḟyn(t0) converges tȯy(t0) for somet0 ∈ [a, b], thenyn
converges in theC2 topology toy on the interval [t0 − ε, t0 + ε] ∩ [a, b]. The proof of the
Lemma will follow immediately from the claim, sincėyn(a) converges tov0 = ẏ(a).

LetU be the geodesic ball centered aty(t0) and of radiusr; observe thatU is the domain
of a normal geodesic coordinate system. Since‖v0‖ε < r, it follows thaty|[t0−ε,t0+ε]∩[a,b]
has image inU; sinceCε < r andyn(t0) tends toy(t0), it follows thatyn|[t0−ε,t0+ε]∩[a,b]
has image inU for all n sufficiently large. Setzn = (D/dt)ẏn and using local coordinates
in U, for n large enough we can write

(ÿn)
k +

∑
i,j

Γ ki,j(yn)(ẏn)
i(ẏn)

j = (zn)
k,

whereΓ ki,j denote the Christoffel symbols of the Levi–Civita connection ofg in the local
chart. Sincezn tends uniformly to 0 in [t0 − ε, t0 + ε] ∩ [a, b], yn(t0) tends toy(t0) and
ẏn(t0) tends toy(t0), standard results on the continuous dependence of the solution of an
initial value problem from the data allow to conclude thatyn tends toy in theC2 topology
on the given interval. This proves the claim and concludes the proof. �

We can now prove that, if(M, g) admits a strictly convex function (seeDefinition A.1),
then there are only a finite number of solutions of(2.1) and (2.3)that remain inside a
compact subset ofM.

In order to prove the result, we need to recall a few basic facts from Critical Point
Theory. We recall that, given aC1 functionalf : X → R on a Hilbert manifold(X, h), then
f satisfies thePalais–Smale condition at levelc ∈ R if every sequence(xk) in X such that

lim
k→∞

f(xk) = c, lim
k→∞
h(∇f(xk),∇f(xk)) = 0, (3.1)

has a subsequence converging inX. By ∇f(x)we denote thegradientof f atx ∈ X, which
is a bounded linear operator on the Hilbert spaceTxX defined byh(∇f(x), ·) = df(x). A
sequence(xk) satisfying(3.1) is called aPalais–Smale sequencefor f in X at the level
c. If f is of classC2, thenf is said to be aMorse functionif all its critical points are
non-degenerate. For instance, we have proven inProposition 2.5that the action functional
(2.4) is a Morse function onΩp,q([0, T ],M) provided thatp andq are not conjugate on
[0, T ] relatively to(2.1).

It is well known that, as in the case of smooth functions on a finite dimensional differen-
tiable manifold, iff is a Morse function on the Hilbert manifold(X, h) then each critical
point off is isolated.

Proposition 3.2. Let (M, g) be a complete Riemannian manifold, V : M → R a map of
classC2 and assume that M admits a strictly convex functionF : M → R. Consider the
dynamical system(2.1)with initial conditions(2.3); assume that p and q are not conjugate
on [0, T ] relatively to(2.1). Then, for all compact subsetK ⊂ M with p, q ∈ K, there are
only a finite number of solutions with image in K.
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Proof. LetK ⊂ M be a fixed compact set and assume that(xk)
∞
k=1 is a sequence of pairwise

distinct solutions of(2.1) and (2.3)having images inK. The proof of the proposition will
be obtained by showing thatp andq must be conjugate relatively to(2.1) on [0, T ]. To
this aim, since the image of thexk ’s remain in the compact setK, we can assume thatV is
bounded onM, and therefore thatLT satisfies the Palais–Smale condition at every level on
Ωp,q([0, T ],M) as we can see, for instance, by the methods developed in[15].

Indeed, it is well known thatLT satisfies the Palais–Smale condition whenV hassub-
quadratic growth, i.e., when there exists constantsC1, C2 ∈ R+ andα ∈]0,2[, such that
V(x) ≤ C1 + C2 · dist(x, x0)

α for all x ∈ M and for some fixedx0 inM.
Now, assume by contradiction thatp andq are not conjugate; then it must be:

lim
k→∞
LT (xk) = +∞, (3.2)

for, otherwise(xk) would contain a Palais–Smale subsequence at the level

c = lim sup
k→∞

LT (xk) < +∞

(recall that eachxk is a critical point ofLT ), and therefore it would have a converging
subsequence. SinceLT is a Morse function onΩp,q([0, T ],M) whenp and q are not
conjugate, the lack of discreteness of the critical points ofLT would then imply thatp and
q are conjugate and(3.2) is proven.

Now, recall that eachxk satisfies the conservation law(2.2), and for eachk ∈ N set:

Ek = 1
2g(ẋk, ẋk)+ V(xk).

An immediate calculation gives:

Ek = 1

T
LT (xk)+ 2

∫ T

0
V(xk(t))dt,

and sinceV is bounded inK from (3.2)we obtain that

lim
k→∞

Ek = +∞.

Again, by the boundedness ofV from the above equality we get thatg(ẋk, ẋk) is uniformly
divergenton [0, T ], i.e.,

lim
k→∞

[ min
t∈[0,T ]

g(ẋk(t), ẋk(t))] = +∞.

For eachk ∈ N, set:

bk = ‖ẋk(1
2T )‖,

so that

lim
k→∞

bk = +∞, (3.3)

moreover we denote byyk : [−bk, bk] → M the curve:

yk(s) = xk

(
T

2
+ s · T

2bk

)
, s ∈ [−bk, bk].
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One computes immediately

ẏk(0) = ẋk

(
T

2

)
· T

2bk
, ‖ẏk(0)‖ ≡ T

2
, (3.4)

and

D

ds
ẏk(s) = D

ds
ẋk

(
T

2
+ s · T

2bk

)
· T

2

4b2
k

. (3.5)

From (3.4) we obtain that, up to subsequences, we can assume thatẏk(0) converges to a
non-zero vectorv0 ∈ TM, and since∥∥∥∥Ddt ẋk

∥∥∥∥ = ‖∇V(xk)‖

is bounded, from(3.3) and (3.5)we get that the norm of the covariant derivative(D/dt)ẏk
is uniformly convergent to 0 on each compact subset ofR.

We now useLemma 3.1to conclude thatyk converges in theC2 topology on each bounded
interval ofR to a non-constant affinely parameterized geodesicy : R → M. Sinceyk has
image inK for all k ∈ N, it follows thaty has image inK and in particularF(y(s)) is
bounded. But the functionF ◦ y : R → R is strictly convex by assumption, and it cannot
be bounded.

We therefore get to a contradiction and the proposition is proven. �

Remark 3.3. It is not clear whether the non-conjugacy assumption for the pointsp andq
can be omitted inProposition 3.2, even though the proof presented only works in this case.
The authors do not know any counterexample to the finiteness result ofProposition 3.2
for the number of solutions joining two conjugate points, and it could be conjectured that,
possibly under stronger assumptions, one has a finite number of solutions also in the case of
boundary value problems with conjugate endpoints. This seems to be the case in a number
of circumstances in the case of one-dimensional problems[2,20].

We will now focus our attention to the problem of determining under which conditions
we have finiteness of the number ofall solutions of(2.1) and (2.3). The central result in
this direction is based on a suitable assumption relating the growth at infinity of the convex
functionF along the flow lines of the potentialV . In order to present the result in a clearer
form, we will first state a version of the theorem that uses non-optimal assumptions, and
later (Remark 3.5) we will describe how to weaken the hypotheses.

Proposition 3.4. Let (M, g) be a complete Riemannian manifold, V : M → R a map
of classC2 and assume that M admits a strongly convex functionF : M → R (see
Definition A.2) such that:

• F has a minimum point in M;
• F is non-increasing on each flow line of∇V .

If p and q are non-conjugate on[0, T ] relatively to (2.1), then there are only a finite
number of solutions of the dynamical system(2.1)satisfying the boundary conditions(2.3).
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Proof. The proof will be obtained as an application ofProposition 3.2, by showing that,
under our assumptions, all the solutions of(2.1) and (2.3)must remain inside some compact
subset ofM.

To this aim, first observe that sinceF has a minimum point inM, from the strict
convexity ofF it follows that every sublevelFc = F−1(] − ∞, c]) is compact inM
(Proposition A.4). Secondly, observe that the non-increasing assumption forF on the flow
lines of∇V , i.e.,

g(∇F,∇V) ≤ 0

onM, implies thatF ◦ x : [0, T ] → R is strictly convex for every non-constant solution
x : [0, T ] → M of (2.1). For, given such a solutionx, one computes immediately:

d2

dt2
F(x(t)) = −g(∇F(x(t)),∇V(x(t)))+ Hessx(t)F(ẋ(t), ẋ(t)), (3.6)

sinceF is strongly convex andF is non-increasing on each flow line of∇V , i.e.,

−g(∇F(x),∇V(x)) ≥ 0,

the right-hand side of(3.6)is strictly positive except possibly at those instants whenẋ(t) = 0.
Now, observe that every non-constant solutionx of (2.1)only admits isolated zeros of the
derivativeẋ.

Since convex functions on closed intervals attains their maximum at either one of the
endpoints, it follows that every solution of(2.1) and (2.3)must have image in the compact
subsetFd , whered = max{F(p), F(q)}. This concludes the proof. �

Remark 3.5. From the proof ofProposition 3.4it is clear that the same conclusion holds
if one requires the weaker assumption thatF be non-decreasing along the flow lines of∇V
only outside some compact subset ofM.

More generally, the finiteness result ofProposition 3.4holds under the assumption of
existence of a (non-necessarily differentiable) proper functionF : M → R such thatF ◦ x
is strictly convex for every (non-constant) solutionx of (2.1).

As a corollary ofProposition 2.6 and 3.4we obtain the following corollary.

Corollary 3.6. Under the assumption ofProposition 3.4, the setσ∞ (recall (2.6)) has null
measure.

Proof. By Proposition 3.4, σ∞ is contained in the set of points ofM that are conjugate to
p on [0, T ] relatively to(2.1); by Proposition 2.6the latter has null measure. �

4. Some examples

Example 4.1. If the potentialV ≡ 0, then the dynamical system(2.1) reduces to the
geodesic equation on the Riemannian manifold(M, g). In this case,Proposition 3.4gives
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us a finiteness result for geodesics joining two fixed non-conjugate points in a manifold
admitting a strictly convex functionF . This fact was proven in[11] under the more restrictive
assumption thatF is strongly convex. This result can be used in General Relativity to the
study of the so-calledgravitational lensing effect(see for instance[11,12]); in geometrical
terms, this phenomenon corresponds to the existence of multiple lightlike geodesics joining a
fixed eventpand a fixed observerγ in a Lorentzian manifold. In this context,Proposition 3.2
tells us that if the Lorentzian metric isstatic and if the underlying Riemannian manifold
admits a strictly convex function, then the gravitational lensing effect produces only a finite
number of images of the light source provided that the source and the observer are not
conjugate by lightlike geodesics.

Generalizations of this result to the case of non-static Lorentzian metrics is possible by
developing a theory analogue to that ofSection 3for general Lagrangians action func-
tionals of the formL(x) = ∫ b

a
L(t, x, ẋ)dt. The case ofstationary(i.e., time-independent)

Lorentzian metrics is studied in[12].

Example 4.2. In the special case that(M, g) is the Euclidean spaceRn, then there are
several criteria to establish when the dynamical system(2.1) is such that all its solutions
satisfying the two-point boundary condition remain inside a compact set. For instance,
assume that‖∇V‖ is bounded:

‖∇V‖ ≤ M. (4.1)

Let x : [0, T ] → Rn be a solution of(2.1) and (2.3), with q = (q1, . . . , qn); denote by
xi : [0, T ] → R theith coordinate ofx and letτi ∈ [0, T ] be a maximum point for|xi|. We
have

|qi − xi(τi)| =
∣∣∣∣
∫ T

τi

ẋi(s)

∣∣∣∣ =
∣∣∣∣
∫ T

τi

[∫ s

τi

ẍi(r)dr

]
ds

∣∣∣∣
≤

∫ T

τi

∫ s

τi

‖∇V(x(r))‖ dr ds ≤ MT2.

Hence, all the solutions of(2.1) and (2.3)have image in the closed ball centered atq and of
radiusMT2√n. Clearly, the same argument works under milder assumptions on the growth
of ∇V in replacement of the boundedness assumption(4.1).

Using the above criterion andProposition 3.2, we obtain that, given the dynamical system
(2.1)in Rn, under suitable assumptions on the growth of‖∇V‖, then there are only a finite
number of solutions joining two non-conjugate points. An example is given by thependulum
equationẍ = − sinx in R; the corresponding focal decomposition ofR2 is studied in[19].
The remarkable fact about the focal decomposition ofR2 determined by the pendulum
equation[20, Fig. 1, p. 519]is that, as it was observed in[20], the very same decomposition
of R2 appears independently in a totally different context on a recent paper in Quantum
Statistical Mechanics[3].

Remark 4.3. Given a differential equation

ẍ = f(t, x, ẋ), (4.2)
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in Rn, some authors (see for instance[20]) gives the following definition. Theequation (4.2)
is said to beregular if for any compact subsetK1 ⊂ Rn there exists a compact subsetK2 ⊂
Rn such that all the solutions of(4.2) satisfyingx(a), x(b) ∈ K1 remain insideK2. For
instance, whenf is bounded then the same argument ofExample 4.2shows that(4.2) is
regular.

It is easy to prove the following criterion to establish the regularity of(2.1).

Lemma 4.4. Given the dynamical system(2.1) in the complete Riemannian manifold
(M, g), assume that:

• limx→∞V(x) = −∞;
• V does not have critical points outside some compact subset of M;
• the HessianHessV is negative semi-definite on the orthogonal distribution∇V⊥ outside

some compact subset of M.

Then all the solutionsx : [0, T ] → M of (2.1) that satisfy the boundary conditions(2.3)
have image inside a compact subset of M.

Proof. Since limx→∞V(x) = −∞, then the closed sets

Vc = {x ∈ M : V(x) ≥ c}
are compact for allc ∈ R; we will prove that all the solutions of(2.1) and (2.3)remain
in someVc. To this aim, letx : [0, T ] → M be such a solution and letτ ∈ [0, T ] be a
minimum point forg(t) = V(x(t)). We can clearly assume thatτ ∈]0, T [. Let c ∈ R be large
enough so that∇V �= 0 and HessV is negative semi-definite on the orthogonal distribution
∇V⊥ outsideVc. We have 0= g′(τ) = g(∇V(x(τ)), ẋ(τ)), so thatẋ(τ) ∈ ∇V(x(τ))⊥; on
the other hand,x(τ) /∈ Vc, then

g′′(τ) = Hessx V(ẋ(τ), ẋ(τ))− g(∇V(x(τ))),∇V(x(τ)) < 0,

against the assumption thatτ is a minimum forg. This concludes the proof. �

For dynamical systems in Euclidean spaces, we have the following regularity criterion,
which is basically well known (see[20, Remark 2, p. 544]for the one-dimensional and
time-dependent case).

Lemma 4.5. Consider the dynamical system(2.1) in Rn, with V : Rn → R a function of
classC2 satisfying the condition:

xi
∂V

∂xi
< 0 (4.3)

for all i = 1, . . . , n and for allxi with |xi| sufficiently large. Then all the solutions of(2.1)
satisfying the boundary conditions(2.3)have image in a compact subset ofRn.

Proof. Let x = (x1, . . . , xn) : [0, T ] → Rn be a solution of(2.1) satisfying(2.3); for all
i = 1, . . . , n, letτi ∈ [0, T ] be a maximum point forxi(t). We can clearly assumeτi ∈]0, T [



A. Masiello, P. Piccione / Journal of Geometry and Physics 49 (2004) 67–88 83

andxi(τi) �= 0. If x(τi) > 0, the value ofxi(τi) cannot betoo large, because otherwise,
by (4.3), it would beẍi(τi) = −∂V/∂xi(x(τi)) > 0 andx(τi) could not be a maximum for
xi. Similarly, if x(τi) < 0, then−x(τi) cannot be very large, because otherwise by(4.3)
ẍi(τi) = −∂V/∂xi(x(τi)) < 0 andx(τi) could not be a minimum forxi. This concludes the
proof. �

Examples of potentialsV satisfying the assumptions ofLemma 4.5are all polynomial
functions onRn containing only even powers of the variables and whose coefficients are
negative.

Example 4.6. If (M, g) admits a strongly convex functionF , thenProposition 3.4can be
applied to the case thatV = −F . Actually, in this case the convexity assumption can be
weakened, and we obtain easily the following finiteness result for concave potentials. We
say that a mapG : M → R is (strongly) concaveif −G is (strongly) convex.

Proposition 4.7. Let (M, g) be a complete Riemannian manifold andV : M → R be a
map of classC2 which has an isolated maximum and which is strongly concave. Then, the
dynamical system(2.1)admits only a finite number of solutionsx : [0, T ] → M satisfying
(2.3)provided that p and q are non-conjugate on[0, T ] relatively to(2.1).

Proof. The proof ofProposition 3.4can be repeatedverbatimby settingF = −V , except for
the following detail. Given a solutionx : [0, T ] → M of (2.1), the strict convexity ofF ◦x is
now proven, rather than by the strong convexity ofF , by observing that Hessx F(ẋ, ẋ) ≥ 0,
while −g(∇F(x),∇V(x)) = g(∇V(x),∇V(x)) > 0 except possibly whenx passes through
the unique critical point ofV . �

5. Generically, the number of solutions of (2.1) and (2.3) is odd

One of the most powerful tools forcountingthe number of critical points of aC2 map
is given by Morse theory. In this section we use a classical result of infinite dimensional
Morse theory to conclude that the set of solutions of(2.1) and (2.3), under the non-conjugacy
assumption forp andq is either infinite or it has an odd number of elements.

The main technical assumption in order to develop the Morse theory on an infinite di-
mensional Hilbert manifold is the Palais–Smale condition; for this reason we will make the
assumption of subquadratic growth of the potential functionV . The followingodd number
theoremis proven under the assumption that the underlying Riemannian manifoldM has
trivial topology, i.e., that it is contractible. This is the case, for instance, whenM admits a
non-trivial convex function with a minimum point (seeProposition A.3).

Recall that, given a topological spaceX and a ringR, theith Betti numberβi(X;R) of
X is theR-dimension of theith singular homology module ofX with coefficients inR; the
Poincaré formal power seriesPλ(X;R) of X in R in the variableλ ∈ R is the series:

Pλ(X;R) =
∞∑
i=1

βi(X;R) λi.
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Proposition 5.1. Suppose that(M, g) is a complete and contractible Riemannian manifold,
p ∈ M, and letV : M → R be aC2 map which has subquadratic growth, i.e., there exists
constantsC1, C2 ∈ R+ andα ∈]0,2[, such that

V(x) ≤ C1 + C2 · dist(x, x0)
α

for all x ∈ M and for some fixedx0 in M.
Then, for all eveni, the setσi (recall (2.6)) has null measure in M.

Proof. By Proposition 2.6, it suffices to show that, under our assumptions, there are either
infinitely many or an odd number of solutions of(2.1) satisfying(2.3) if p andq are not
conjugate on [0, T ] relatively to(2.1).

To this aim, assume thatp and q are not conjugate, so that the Lagrangian action
functionalLT (defined in(2.4)) is a Morse function on the complete Hilbert manifold
Ωp,q([0, T ],M). SinceV has subquadratic growth, thenLT satisfies the Palais–Smale con-
dition onΩp,q([0, T ],M) and it is bounded from below. Denote bySp,q the set of solutions
of (2.1) satisfying(2.3); for x ∈ Sp,q denote byµ(x) the number of conjugate instants
alongx (recall Definition 2.7). Then, we can write the classical Morse relations for the
critical points ofLT (see for instance[16,17]), that are expressed by the following equality
of formal power series inλ ∈ R:∑

x∈Sp,q
λµ(x) = Pλ(Ωp,q([0, T ],M); R)+ (1 + λ)Q(λ), (5.1)

wherePλ(Ωp,q([0, T ],M); R) is the Poincaré formal power series ofΩp,q([0, T ],M) in
R, andQ(λ) is a formal power series inλ with coefficients inN

⋃{+∞}.
SinceM is contractible, then so isΩp,q([0, T ],M), henceβi(Ωp,q([0, T ],M); R) = 0

for all i ≥ 1 andβ0(Ωp,q([0, T ],M); R) = 1. Then, settingλ = 1 in (5.1), we obtain the
following equality:

cardinality ofSp,q = 1 + 2Q(1).

SinceQ(1) ∈ N
⋃{+∞}, the above equality says that the cardinality ofSp,q is either

infinite or odd. This concludes the proof. �

If the manifoldM is not contractible, then, under the subquadratic growth assumption
for the potentialV , the number of solutions of the dynamical system(2.1)satisfying(2.3)
is infinite; this is easily proven using the Ljusternik–Schnirelman theory. Recall that the
Ljusternik–Schnirelman categorycat(X) of a topological spaceX is the minimal cardinality
(possibly infinite) of a covering ofX by closed and contractible subsets. The main result
of the Ljusternik–Schnirelman theory is that anyC1 functionalf : X → R on a complete
Banach manifoldX that satisfies the Palais–Smale condition at every level and that is
bounded from below, has at least cat(X) critical points inX.

Proposition 5.2. Assume that(M, g) is a complete Riemannian manifold with M non-
contractible, and letV : M → R be a map of classC2 having subquadratic growth. Then,
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for all p, q ∈ M, there are infinitely many distinct solutions of(2.1)satisfying the boundary
conditions(2.3).

Proof. By a well known result of Fadell and Husseini[7], if M is not contractible the
Ljusternik–Schnirelman category ofΩp,q([0, T ],M) is infinite. The conclusion follows
immediately from the Ljusternik–Schnirelmann theory applied to the functionalLT . �
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Appendix A. Convex functions on Riemannian manifolds

The theory of convex functions has its natural setting in Riemannian geometry. In this
Appendix we recall a few basic facts and examples of Riemannian manifolds admitting
convex functions; a very comprehensive reference for the interested reader is the book by
Udrişte[24]. Throughout the section(M, g) will denote a complete Riemannian manifold.

Definition A.1. A subsetA ⊂ M is said to betotally convexif it contains every geodesic
segment between any two of its points. A functionF : A ⊂ M → R defined on a totally
convex subsetA ofM is said to be convex ifF ◦ γ : [a, b] → R is convexfor all geodesic
γ : [a, b] → A; F is strictly convexif F ◦ γ is strictly convex for every non-constant
geodesicγ in A.

Whenever the domainA of a convex function is not specified it will be implicitly assumed
thatA = M.

For a functionF : M → R of classC2, the convexity is equivalent to the positive
semi-definiteness of the Hessian HessF ; clearly, if HessF is positive definite in the com-
plement of a finite set, thenF is strictly convex. We give the following definition.

Definition A.2. Given a function of classC2F : M → R, we say thatF is strongly convex
if there exists a (continuous) functionλ : M → R+ such that

Hessx F(x)(v, v) ≥ λ(x)g(v, v), ∀ x ∈ M, ∀ v ∈ TxM.

It is easy to see that ifF : M → R is a convex function which is bounded from above,
thenF is constant; it follows in particular that compact Riemannian manifolds do not admit
non-constant convex functions. More generally, if a complete Riemannian manifold(M, g)

admits a non-constant convex function, then its volume is infinite[23]. As to the regularity
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of a convex functionF , we have thatF : A → R is continuous at the interior points ofA;
moreover, a convex function onM is Lipschitz continuous on every compact subset ofM.

For functionsF of classC1 orC2 onM the notion of convexity can be given respectively
in terms of the gradient∇F and the Hessian HessF of F . A C1 mapF : A → R is convex
if and only if for all x, y ∈ A and all geodesic segmentγ : [a, b] → A from x to y it is
F(y) ≥ F(x)+ g(∇F(x), γ̇(a)); F is strictly convex if the inequality is strict whenx �= y.
A C2 mapF : A → R is convex if and only if its Hessian HessF is positive semi-definite
in A.

The existence of a non-constant convex function does not have implications on the topo-
logical structure of the manifold, except for the property of non-compactness. Namely, by
a result of Green and Shioama[9], for every non-compact manifoldM there exists a com-
plete Riemannian metricg onM and a non-constant smooth functionF : M → R which
is convex in(M, g). On the other hand, the existence of a non-constant function satisfying
further properties, like for instance admitting an isolated minimum point, or such that its
sublevels are compact, implies substantial information about the topological structure and
the metrical structure of the manifold (see for instance[1]). For instance, it is not hard to
prove the following proposition.

Proposition A.3. If (M, g) admits a strictly convex function that has a strict local minimum,
then M is diffeomorphic toRn.

Given a simply connected Riemannian manifold(M, g)with non-positive sectional curva-
ture, then for everyx0 the mapx �→ dist(x, x0)

2 is convex. Theheight function(x, y, z) �→ z

defined on the paraboloidz = x2 + y2 is an example of a strictly convex smooth function
on a manifold with positive scalar curvature. A class of examples of Riemannian mani-
folds admitting smooth convex functions with non-isolated zeroes are the tangent bundles
TM of Riemannian manifolds(M, g), when endowed with the Sasaki metricgs: the map
v → g(v, v) is convex in(TM, gs).

Concerning thegrowth at infinityof strictly convex functions, we have the following
proposition.

Proposition A.4. LetF : M → R be a strictly convex function of classC1. Assume that F
has an isolated critical point. Then, this critical point is unique, it is a minimum point for
F, and limx→∞F(x) = +∞, i.e., each sublevelFc = F−1(] − ∞, c]) is compact inM.

Proof. See for instance[11]. �

We will briefly describe some well known constructions of convex functions.
Recall that apoleof (M, g) is a pointx0 ∈ M such that expx0

: Tx0M → M is a global
diffeomorphism. For instance, ifM is simply connected and it has non-positive sectional
curvature, then by the Hadamard theorem every point ofM is a pole.

Example A.5. Given a manifold with a polex0, then for everyx ∈ M there exists a unique
geodesicγx : [0,1] → M from x0 to x; theradial curvature relative to the polex0 ofM at
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x is defined to be the maximum of the sectional curvatures of all planes inTxM containing
the directionγ̇x(1).

If (M, g)admits a polex0 such that its relative radial curvature is everywhere non-positive,
then the functionF(x) = dist(x, x0)

2 is strictly convex. Observe that, in this case,x0 is an
isolated minimum point forF .

Convex functions exist also on manifolds having non-negative sectional curvature. Recall
that aray in (M, g) is a geodesic (parameterized by arc length)γ : [0,+∞[→ M such that
γ|[0,T ] is minimal for allT > 0, i.e., such that dist(γ(0), γ(T )) = T for all T > 0. Through
every point of a non-compact complete Riemannian manifold there exists a ray.

Example A.6. Given a rayγ : [0,+∞[→ M in M, the Busemann function[4,6] ηγ
associated toγ is given by

ηγ(x) = lim
t→+∞[t − dist(x, γ(t))].

If (M, g) is a complete, non-compact Riemannian manifold whose sectional curvature is
non-negative outside a compact subset ofM, then eachηγ is convex[10]. In particular, in
this situation, the supremumηp of all Busemann functions associated to the rays starting
at a fixed pointp ∈ M is a convex function that is non-constant on every non-constant
geodesic ofM; moreover, the sublevels ofηp are compact. Observe that given a convex
functionF : M → R which is non-constant on every non-constant geodesic, then for all
strictly increasing and strictly convex functionΨ : R → R the compositionΨ ◦F is strictly
convex onM. Observe also that, in general,ηp is not differentiable; for instance, if(M, g)
is a Euclidean space andp ∈ M is the origin, thenηp(x) = ‖x‖.

It is easy to see that ifF : A → R is a convex function which is not constant on every
non-constant geodesic inA and if Ψ : R → R is a strictly convex function, then the
compositionΨ ◦ F is strictly convex inA.

Killing fields give rise to convex functions provided that the associated Killing curvature
ofM is non-positive; recall that ifY is a Killing vector field on(M, g), then the associated
Killing curvatureatp ∈ M is the maximum of the sectional curvatures of all planes inTpM

containing the directionY(p).

Example A.7. If Y is a Killing vector field on(M, g)whose Killing curvature is non-positive,
then the mapF(x) = (1/2)g(Y(x), Y(x)) is convex. Clearly, the minimum points ofF are
the zeroes ofY ; more generally, the critical points ofF are precisely the pointsx ∈ M such
that the integral curve ofY throughx is a geodesic.
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